Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Longitudinal Locomotor and Postural Control Following Mild Traumatic Brain Injury

    Thumbnail
    View/Open
    Fino_PC_D_2016.pdf (3.429Mb)
    Downloads: 243
    Supporting documents (409.3Kb)
    Downloads: 13
    Supporting documents (409.3Kb)
    Downloads: 16
    Supporting documents (409.1Kb)
    Downloads: 16
    Supporting documents (410.1Kb)
    Downloads: 13
    Date
    2016-02-05
    Author
    Fino, Peter C.
    Metadata
    Show full item record
    Abstract
    Millions of people sustain a mild traumatic brain injury (concussion) each year. While most clinical signs and symptoms resolve within 7-10 days for the majority of typical concussions, some gait and balance tasks have shown abnormalities lasting beyond the resolution of clinical symptoms. These abnormalities can persist after athletes have been medically cleared for competition, yet the implications of such changes are unclear. Most prior research has examined straight gait and standard measures of balance, yet there is a lack of knowledge regarding potential persistent effects on non-straight maneuvers or on indicators of motor control variability or complexity. To expand the knowledge of post-concussion locomotor and postural changes, this investigation examined the recovery of recently concussed athletes longitudinally, over the course of one year, in three domains: 1) path selection and body kinematics during turning gait, 2) non-linear local dynamic stability during straight gait, and 3) postural control complexity during quiet standing. Compared to matched health controls, concussed athletes exhibited significant and persistent differences in turning kinematics, local dynamic stability, and postural complexity over the initial six weeks following injury. These motor differences may increase the risk of injury to concussed athletes who are cleared to return to play. Given the persistent nature of these effects, future clinical tests may benefit from incorporating gait assessments before returning athletes to competition. Future research should prospectively and longitudinally monitor locomotor and postural control in conjunction with structural and functional changes within the brain to better understand the pathophysiology of concussions and potential rehabilitation strategies.
    URI
    http://hdl.handle.net/10919/73775
    Collections
    • Doctoral Dissertations [14871]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us