Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonlinear algorithms for fast and robust control of electrical drives

    Thumbnail
    View/Open
    LD5655.V856_1986.B676.pdf (9.748Mb)
    Downloads: 1420
    Date
    1986
    Author
    Borojević, Dušan
    Metadata
    Show full item record
    Abstract
    Several new nonlinear algorithms for speed control of electrical drives are developed. They are compared with the algorithms for integral-proportional (I-P) control, sliding mode control (SLM) and adaptive control which uses the torque and parameter observer. To achieve fast and robust response, all algorithms use very large gains. In a new, variable limit PI (VLPI) control algorithm, integrator windup is completely prevented by using a high gain, "variable dead zone" nonlinearity as a local feedback over the integrator. Recently proposed soft variable structure (SVS) control, derived by using the Liapunov direct method, is modified so that the algorithm can be implemented with only the output measurements. Proper operation is achieved for any value of the output variable. The new control is very robust, but exhibits a steady state error. Two versions of the adaptive PI (API) control algorithm are developed that have fast and robust transient response with zero steady state error. The SVS API version operates similarly as the modified SVS control, but does not have its drawbacks. The SLM API version operates like the SLM control during large transients, and like VLPI control when close to the steady state. The local stability of the control is proved using the "small gain theorem". Its global behavior is analyzed by describing functions. Very good operation of the SVS API speed control within the proportional position loop is demonstrated. Faster transient response is achieved by implementing the SLM adaptive proportional control in the position loop. The operation is the same as the operation of the SLM API control in the speed loop. Similarity between modified SVS control, and classical adaptive algorithms is shown. API control, All the algorithms are simulated and compared for twofold and tenfold changes in plant parameters. The experimental verification of the results for I-P control, SLM control, and modified SVS control, are presented. Theory of the new algorithms is general, such that the results are applicable to any SISO plant that can be stabilized.
    URI
    http://hdl.handle.net/10919/74723
    Collections
    • Doctoral Dissertations [14916]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us