Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis, characterization and reactivity of transition metal containing zeolites

    Thumbnail
    View/Open
    LD5655.V856_1986.R677.pdf (21.85Mb)
    Downloads: 366
    Date
    1986
    Author
    Rossin, Joseph A.
    Metadata
    Show full item record
    Abstract
    Transition metal containing zeolites (zeolite A and ZSM-5) were prepared by addition of various transition metal containing substrates to zeolite synthesis gels. Crystal growth data were recorded in order to determine the influence of the transition metal species on the rate of crystal growth. X-ray diffraction, oxygen adsorption, FTIR and SEM were utilized to evaluate crystal purity. X-ray photoelectron spectroscopy (XPS), chemical analysis and electron microprobe analysis were performed in order to ascertain the position (intrazeolitic versus surface) and homogeneity of the transition metal. It was concluded that intrazeolitic transition metals were produced by the novel procedure presented in this work. 1-Hexene hydroformylation by rhodium zeolite A showed intrazeolitic rhodium to migrate to the external surface of the zeolite. However, in the presence of a solution and surface rhodium poison, intrazeolitic rhodium was found to hydroformylate 1-hexene exclusively to heptanal. Ruthenium containing zeolite A was evaluated under CO-hydrogenation conditions. No migration of intrazeolitic ruthenium to the external surface of the zeolite was observed over the course of the reaction. The product distribution obtained for this catalyst did not follow a log normal behavior. Also, loss of zeolite crystallinity was observed following the reaction. Cobalt ZSM-5 was evaluated under CO-hydrogenation conditions. No migration of cobalt to the external surface of the zeolite occurred. XPS analysis of the catalyst following various stages of the reaction indicated that intrazeolitic cobalt was not reduced to the zero valent state. Consequently, the non-zero valent cobalt was not capable of hydrogenating carbon monoxide.
    URI
    http://hdl.handle.net/10919/76271
    Collections
    • Doctoral Dissertations [14913]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us