Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spatio-temporal Event Detection and Forecasting in Social Media

    Thumbnail
    View/Open
    Zhao_L_D_2016.pdf (7.083Mb)
    Downloads: 1003
    Date
    2016-08-01
    Author
    Zhao, Liang
    Metadata
    Show full item record
    Abstract
    Nowadays, knowledge discovery on social media is attracting growing interest. Social media has become more than a communication tool, effectively functioning as a social sensor for our society. This dissertation focuses on the development of methods for social media-based spatiotemporal event detection and forecasting for a variety of event topics and assumptions. Five methods are proposed, namely dynamic query expansion for event detection, a generative framework for event forecasting, multi-task learning for spatiotemporal event forecasting, multi-source spatiotemporal event forecasting, and deep learning based epidemic modeling for forecasting influenza outbreaks. For the first of these methods, existing solutions for spatiotemporal event detection are mostly supervised and lack the flexibility to handle the dynamic keywords used in social media. The contributions of this work are: (1) Develop an unsupervised framework; (2) Design a novel dynamic query expansion method; and (3) Propose an innovative local modularity spatial scan algorithm. For the second of these methods, traditional solutions are unable to capture the spatiotemporal context, model mixed-type observations, or utilize prior geographical knowledge. The contributions of this work include: (1) Propose a novel generative model for spatial event forecasting; (2) Design an effective algorithm for model parameter inference; and (3) Develop a new sequence likelihood calculation method. For the third method, traditional solutions cannot deal with spatial heterogeneity or handle the dynamics of social media data effectively. This work's contributions include: (1) Formulate a multi-task learning framework for event forecasting; (2) simultaneously model static and dynamic terms; and (3) Develop efficient parameter optimization algorithms. For the fourth method, traditional multi-source solutions typically fail to consider the geographical hierarchy or cope with incomplete data blocks among different sources. The contributions here are: (1) Design a framework for event forecasting based on hierarchical multi-source indicators; (2) Propose a robust model for geo-hierarchical feature selection; and (3) Develop an efficient algorithm for model parameter optimization. For the last method, existing work on epidemic modeling either cannot ensure timeliness, or cannot characterize the underlying epidemic propagation mechanisms. The contributions of this work include: (1) Propose a novel integrated framework for computational epidemiology and social media mining; (2) Develop a semi-supervised multilayer perceptron for mining epidemic features; and (3) Design an online training algorithm.
    URI
    http://hdl.handle.net/10919/81904
    Collections
    • Doctoral Dissertations [14904]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us