Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of Integrated Photobioelectrochemical System (IPB): Processes, Modeling and Applications

    Thumbnail
    View/Open
    Luo_S_D_2018.pdf (12.25Mb)
    Downloads: 803
    Date
    2018-04-24
    Author
    Luo, Shuai
    Metadata
    Show full item record
    Abstract
    Effective wastewater treatment is needed to reduce the water pollution problem. However, massive energy is consumed in wastewater treatment, required to design an innovative system to reduce the energy consumption to solve the energy crisis. Integrated photobioelectrochemical system (IPB) is a powerful system to combine microbial fuel cells (MFCs) and algal bioreactor together. This system has good performance on the organic degradation, removal of nitrogen and phosphorus, and recover the bioenergy via electricity generation and algal harvesting. This dissertation is divided to twelve chapters, about various aspects of the working mechanisms and actual application of IPB. Chapter 1 generally introduces the working mechanisms of MFCs, algal bioreactor, and modeling. Chapter 2 demonstrates the improvement of cathode material to improve the structure and catalytic performance to improve the MFC performance. Chapter 3 describes the process to use microbial electrolysis cell (MEC) to generate biohythane for the energy recovery. Chapters 4 and 5 demonstrate the application of stable isotope probing to study Shewanella oneidensis MR-1 in the MFCs. Chapters 6 to 8 describe the application of models to optimize MFC and IPB system performance. Chapter 9 describes the strategy improvement for the algal harvesting in IPB. Chapter 10 describes the application of scale-up bioelectrochemical systems on the long-term wastewater treatment. Chapter 11 finally concludes the perspectives of IPBs in the wastewater treatment and energy recovery. This dissertation comprehensively introduces IPB systems in the energy recovery and sustainable wastewater treatment in the future.
    URI
    http://hdl.handle.net/10919/82911
    Collections
    • Doctoral Dissertations [14916]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us