Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Program Anomaly Detection Against Data-Oriented Attacks

    Thumbnail
    View/Open
    Cheng_L_D_2018.pdf (4.073Mb)
    Downloads: 284
    Date
    2018-08-29
    Author
    Cheng, Long
    Metadata
    Show full item record
    Abstract
    Memory-corruption vulnerability is one of the most common attack vectors used to compromise computer systems. Such vulnerabilities could lead to serious security problems and would remain an unsolved problem for a long time. Existing memory corruption attacks can be broadly classified into two categories: i) control-flow attacks and ii) data-oriented attacks. Though data-oriented attacks are known for a long time, the threats have not been adequately addressed due to the fact that most previous defense mechanisms focus on preventing control-flow exploits. As launching a control-flow attack becomes increasingly difficult due to many deployed defenses against control-flow hijacking, data-oriented attacks are considered an appealing attack technique for system compromise, including the emerging embedded control systems. To counter data-oriented attacks, mitigation techniques such as memory safety enforcement and data randomization can be applied in different stages over the course of an attack. However, attacks are still possible because currently deployed defenses can be bypassed. This dissertation explores the possibility of defeating data-oriented attacks through external monitoring using program anomaly detection techniques. I start with a systematization of current knowledge about exploitation techniques of data-oriented attacks and the applicable defense mechanisms. Then, I address three research problems in program anomaly detection against data-oriented attacks. First, I address the problem of securing control programs in Cyber-Physical Systems (CPS) against data-oriented attacks. I describe a new security methodology that leverages the event-driven nature in characterizing CPS control program behaviors. By enforcing runtime cyber-physical execution semantics, our method detects data-oriented exploits when physical events are inconsistent with the runtime program behaviors. Second, I present a statistical program behavior modeling framework for frequency anomaly detection, where frequency anomaly is the direct consequence of many non-control-data attacks. Specifically, I describe two statistical program behavior models, sFSA and sCFT, at different granularities. Our method combines the local and long-range models to improve the robustness against data-oriented attacks and significantly increase the difficulties that an attack bypasses the anomaly detection system. Third, I focus on defending against data-oriented programming (DOP) attacks using Intel Processor Trace (PT). DOP is a recently proposed advanced technique to construct expressive non-control data exploits. I first demystify the DOP exploitation technique and show its complexity and rich expressiveness. Then, I design and implement the DeDOP anomaly detection system, and demonstrate its detection capability against the real-world ProFTPd DOP attack.
    General Audience Abstract
    Memory-corruption vulnerability is one of the most common attack vectors used to compromise computer systems. Such vulnerabilities could lead to serious security problems and would remain an unsolved problem for a long time. This is because low-level memory-unsafe languages (e.g., C/C++) are still in use today for interoperability and speed performance purposes, and remain common sources of security vulnerabilities. Existing memory corruption attacks can be broadly classified into two categories: i) control-flow attacks that corrupt control data (e.g., return address or code pointer) in the memory space to divert the program’s control-flow; and ii) data-oriented attacks that target at manipulating non-control data to alter a program’s benign behaviors without violating its control-flow integrity. Though data-oriented attacks are known for a long time, the threats have not been adequately addressed due to the fact that most previous defense mechanisms focus on preventing control-flow exploits. As launching a control-flow attack becomes increasingly difficult due to many deployed defenses against control-flow hijacking, data-oriented attacks are considered an appealing attack technique for system compromise, including the emerging embedded control systems. To counter data-oriented attacks, mitigation techniques such as memory safety enforcement and data randomization can be applied in different stages over the course of an attack. However, attacks are still possible because currently deployed defenses can be bypassed. This dissertation explores the possibility of defeating data-oriented attacks through external monitoring using program anomaly detection techniques. I start with a systematization of current knowledge about exploitation techniques of data-oriented attacks and the applicable defense mechanisms. Then, I address three research problems in program anomaly detection against data-oriented attacks. First, I address the problem of securing control programs in Cyber-Physical Systems (CPS) against data-oriented attacks. The key idea is to detect subtle data-oriented exploits in CPS when physical events are inconsistent with the runtime program behaviors. Second, I present a statistical program behavior modeling framework for frequency anomaly detection, where frequency anomaly is often consequences of many non-control-data attacks. Our method combines the local and long-range models to improve the robustness against data-oriented attacks and significantly increase the difficulties that an attack bypasses the anomaly detection system. Third, I focus on defending against data-oriented programming (DOP) attacks using Intel Processor Trace (PT). I design and implement the DEDOP anomaly detection system, and demonstrate its detection capability against the real-world DOP attack.
    URI
    http://hdl.handle.net/10919/84937
    Collections
    • Doctoral Dissertations [16435]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us