Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Approach to Mitigate Electric Vehicle Penetration Challenges through Demand Response, Solar Photovoltaics and Energy Storage Applications in Commercial Buildings

    Thumbnail
    View/Open
    Sehar_F_D_2017.pdf (2.999Mb)
    Downloads: 320
    Date
    2017-07-18
    Author
    Sehar, Fakeha
    Metadata
    Show full item record
    Abstract
    Electric Vehicles (EVs) are active loads as they increase the demand for electricity and introduce several challenges to electrical distribution feeders during charging. Demand Response (DR) or performing load control in commercial buildings along with the deployment of solar photovoltaic (PV) and ice storage systems at the building level can improve the efficiency of electricity grids and mitigate expensive peak demand/energy charges for buildings. This research aims to provide such a solution to make EV penetration transparent to the grid. Firstly, this research contributes to the development of an integrated control of major loads, i.e., Heating Ventilation and Air Conditioning (HVAC), lighting and plug loads while maintaining occupant environmental preferences in small- and medium-sized commercial buildings which are an untapped DR resource. Secondly, this research contributes to improvement in functionalities of EnergyPlus by incorporating a 1-minute resolution data set at the individual plug load level. The research evaluates total building power consumption performance taking into account interactions among lighting, plug load, HVAC and control systems in a realistic manner. Third, this research presents a model to study integrated control of PV and ice storage on improving building operation in demand responsive buildings. The research presents the impact of deploying various combinations of PV and ice storage to generate additional benefits, including clean energy generation from PV and valley filling from ice storage, in commercial buildings. Fourth, this research presents a coordinated load control strategy, among participating commercial buildings in a distribution feeder to optimally control buildings' major loads without sacrificing occupant comfort and ice storage discharge, along with strategically deployed PV to absorb EV penetration. Demand responsive commercial building load profiles and field recorded EV charging profiles have been added to a real world distribution circuit to analyze the effects of EV penetration, together with real-world PV output profiles. Instead of focusing on individual building's economic benefits, the developed approach considers both technical and economic benefits of the whole distribution feeder, including maintaining distribution-level load factor within acceptable ranges and reducing feeder losses.
    URI
    http://hdl.handle.net/10919/86654
    Collections
    • Doctoral Dissertations [15781]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us