VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Bayesian Methods for Intensity Measure and Ground Motion Selection in Performance-Based Earthquake Engineering

TR Number

Date

2019-03-19

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The objective of quantitative Performance-Based Earthquake Engineering (PBEE) is designing buildings that meet the specified performance objectives when subjected to an earthquake. One challenge to completely relying upon a PBEE approach in design practice is the open-ended nature of characterizing the earthquake ground motion by selecting appropriate ground motions and Intensity Measures (IM) for seismic analysis. This open-ended nature changes the quantified building performance depending upon the ground motions and IMs selected. So, improper ground motion and IM selection can lead to errors in structural performance prediction and thus to poor designs. Hence, the goal of this dissertation is to propose methods and tools that enable an informed selection of earthquake IMs and ground motions, with the broader goal of contributing toward a robust PBEE analysis. In doing so, the change of perspective and the mechanism to incorporate additional information provided by Bayesian methods will be utilized.

Evaluation of the ability of IMs towards predicting the response of a building with precision and accuracy for a future, unknown earthquake is a fundamental problem in PBEE analysis. Whereas current methods for IM quality assessment are subjective and have multiple criteria (hence making IM selection challenging), a unified method is proposed that enables rating the numerous IMs. This is done by proposing the first quantitative metric for assessing IM accuracy in predicting the building response to a future earthquake, and then by investigating the relationship between precision and accuracy. This unified metric is further expected to provide a pathway toward improving PBEE analysis by allowing the consideration of multiple IMs.

Similar to IM selection, ground motion selection is important for PBEE analysis. Consensus on the "right" input motions for conducting seismic response analyses is often varied and dependent on the analyst. Hence, a general and flexible tool is proposed to aid ground motion selection. General here means the tool encompasses several structural types by considering their sensitivities to different ground motion characteristics. Flexible here means the tool can consider additional information about the earthquake process when available with the analyst. Additionally, in support of this ground motion selection tool, a simplified method for seismic hazard analysis for a vector of IMs is developed.

This dissertation addresses four critical issues in IM and ground motion selection for PBEE by proposing: (1) a simplified method for performing vector hazard analysis given multiple IMs; (2) a Bayesian framework to aid ground motion selection which is flexible and general to incorporate preferences of the analyst; (3) a unified metric to aid IM quality assessment for seismic fragility and demand hazard assessment; (4) Bayesian models for capturing heteroscedasticity (non-constant standard deviation) in seismic response analyses which may further influence IM selection.

Description

Keywords

Ground Motion Characterization, Information Theory, Copulas, Markov Chain Monte Carlo

Citation