Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stochastic Computer Model Calibration and Uncertainty Quantification

    Thumbnail
    View/Open
    Fadikar_A_D_2019.pdf (12.98Mb)
    Downloads: 6112
    Supporting documents (5.995Kb)
    Downloads: 26
    Supporting documents (5.989Kb)
    Downloads: 26
    Supporting documents (5.974Kb)
    Downloads: 28
    Date
    2019-07-24
    Author
    Fadikar, Arindam
    Metadata
    Show full item record
    Abstract
    This dissertation presents novel methodologies in the field of stochastic computer model calibration and uncertainty quantification. Simulation models are widely used in studying physical systems, which are often represented by a set of mathematical equations. Inference on true physical system (unobserved or partially observed) is drawn based on the observations from corresponding computer simulation model. These computer models are calibrated based on limited ground truth observations in order produce realistic predictions and associated uncertainties. Stochastic computer model differs from traditional computer model in the sense that repeated execution results in different outcomes from a stochastic simulation. This additional uncertainty in the simulation model requires to be handled accordingly in any calibration set up. Gaussian process (GP) emulator replaces the actual computer simulation when it is expensive to run and the budget is limited. However, traditional GP interpolator models the mean and/or variance of the simulation output as function of input. For a simulation where marginal gaussianity assumption is not appropriate, it does not suffice to emulate only the mean and/or variance. We present two different approaches addressing the non-gaussianity behavior of an emulator, by (1) incorporating quantile regression in GP for multivariate output, (2) approximating using finite mixture of gaussians. These emulators are also used to calibrate and make forward predictions in the context of an Agent Based disease model which models the Ebola epidemic outbreak in 2014 in West Africa. The third approach employs a sequential scheme which periodically updates the uncertainty inn the computer model input as data becomes available in an online fashion. Unlike other two methods which use an emulator in place of the actual simulation, the sequential approach relies on repeated run of the actual, potentially expensive simulation.
    General Audience Abstract
    Mathematical models are versatile and often provide accurate description of physical events. Scientific models are used to study such events in order to gain understanding of the true underlying system. These models are often complex in nature and requires advance algorithms to solve their governing equations. Outputs from these models depend on external information (also called model input) supplied by the user. Model inputs may or may not have a physical meaning, and can sometimes be only specific to the scientific model. More often than not, optimal values of these inputs are unknown and need to be estimated from few actual observations. This process is known as inverse problem, i.e. inferring the input from the output. The inverse problem becomes challenging when the mathematical model is stochastic in nature, i.e., multiple execution of the model result in different outcome. In this dissertation, three methodologies are proposed that talk about the calibration and prediction of a stochastic disease simulation model which simulates contagion of an infectious disease through human-human contact. The motivating examples are taken from the Ebola epidemic in West Africa in 2014 and seasonal flu in New York City in USA.
    URI
    http://hdl.handle.net/10919/91985
    Collections
    • Doctoral Dissertations [16821]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us