Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Combinatorial Curve Neighborhoods of Affine Flag Manifold in Type An-1(1)

    Thumbnail
    View/Open
    Aslan_S_D_2019.pdf (731.0Kb)
    Downloads: 87
    Date
    2019-08-12
    Author
    Aslan, Songul
    Metadata
    Show full item record
    Abstract
    Let X be the affine flag manifold of Lie type An-1(1) where n ≥ 3 and let Waff be the associated affine Weyl group. The moment graph for X encodes the torus fixed points (which are elements of the affine Weyl group Waff and the torus stable curves in X. Given a fixed point u ∈ Waff and a degree d = (d₀, d₁, ..., dn−1) ∈ ℤ≥0n, the combinatorial curve neighborhood is the set of maximal elements in the moment graph of X which can be reached from u′ ≤ u by a chain of curves of total degree ≤ d. In this thesis we give combinatorial formulas and algorithms for calculating these elements.
    General Audience Abstract
    The study of curves on flag manifolds is motivated by questions in enumerative geometry and physics. To a space of curves and incidence conditions one can associate a combinatorial object called the ‘combinatorial curve neighborhood’. For a fixed degree d and a (Schubert) cycle, the curve neighborhood consists of the set of all elements in the Weyl group which can be reached from the given cycle by a path of fixed degree in the moment graph of the flag manifold, and are also Bruhat maximal with respect to this property. For finite dimensional flag manifolds, a description of the curve neighborhoods helped answer questions related to the quantum cohomology and quantum K theory rings, and ultimately about enumerative geometry of the flag manifolds. In this thesis we study the situation of the affine flag manifolds, which are infinite dimensional. We obtain explicit combinatorial formulas and recursions which characterize the curve neighborhoods for flag manifolds of affine Lie type A. Among the conclusions, we mention that, unlike in the finite dimensional case, the curve neighborhoods have more than one component, although all components have the same length. In general, calculations reflect a close connection between the curve neighborhoods and the Lie combinatorics of the affine root system, especially the imaginary roots.
    URI
    http://hdl.handle.net/10919/93039
    Collections
    • Doctoral Dissertations [15818]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us