Investigation of Charge Transfer in Metal-Organic Frameworks for Electrochemical Applications

TR Number
Date
2020-03-20
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

High-performance functional electrode materials are critical for the development of electrochemical energy conversion and storage technologies. Among various advanced materials, three-dimensional (3D) porous structures have attracted extensive interest due to their high surface area and capability for efficient mass transport. Metal-organic frameworks (MOFs) are a novel class of porous coordination polymers constructed with organic linkers connected by inorganic nodes. Their extraordinarily high surface area, permanent pores/channels, good thermal and chemical stabilities have made MOFs one of the most promising materials for various electrochemical applications, including electrocatalysis, supercapacitors, Lithium-ion batteries, chemical sensors, etc. The present dissertation focuses on the investigation of charge transfer mechanism in MOF films so as to establish design rules for future MOF design, and the exploration of MOF-based materials for electrochemical and photoelectrochemical applications.

To promote the use of MOF-based materials in electrochemical applications, efficient charge transfer is a necessity. In redox-active MOFs, charge transfer can happen through redox hopping, i.e. site-to-site electron hopping coupled to diffusion of counter ions to balance electroneutrality. While the apparent diffusion coefficient (Dapp) has been employed to describe the overall charge transfer efficiency, independent elucidation of electron and ion diffusion is crucial for providing insights into the mechanism of charge transfer in MOFs. In Chapter 2, we investigated the MOF pore size effect on electron and ion diffusion. Three redox-active ferrocene-doped MOF (Fc-MOF) films with different pore sizes immobilized on conductive substrates were prepared, and electron and ion diffusion coefficients and rate constants were quantified by applying a theoretical model to chronoamperometric responses. Increasing MOF pore size led to an increase in ion diffusion rate constant and a decrease in electron diffusion rate constant. The overall charge transfer rate constant increased when MOF pore size increased, implying the ability of promoting efficient charge transfer through control of MOF pore size.

As charge transfer via redox hopping proved to be feasible, Chapter 3 focused on the application of a ruthenium(II)-polypyridyl doped MOF film immobilized on a conductive substrate, UiO-67-Ru@FTO, for solid-state electrochemiluminescence (ECL). In the presence of tripropylamine as a coreactant, UiO-67-Ru@FTO exhibited higher ECL intensity and better reproducibility compared to corresponding solution-based ECL system. Subsequently, UiO-67-Ru@FTO was successfully used for dopamine detection, highlighting the great potential of using MOF-based materials as solid-state ECL detector for practical applications.

Covalent-organic frameworks (COFs) are a recently emerging family of crystalline organic polymers constructed with organic building blocks linked by covalent bonds. In addition to advantages including high surface area and high porosity that are similar to MOFs, COFs possess low density due to the constitution of light-weighted elements and excellent stability owing to the robust covalent bonds. Therefore, it is of our interest to investigate the properties and potential applications of COFs. Two-dimensional (2D) COFs are composed of conjugated organic layers stacked via - interactions. Chapter 4 focused on understanding the effects of intraplanar -conjugation and interplanar -stacking on the photophysical properties of a 2D COF, TpBpy. Compared to the two building blocks, TpBpy exhibited a red-shifted emission, due to the - stacking. Density functional theory (DFT) calculations were performed on energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). It was found that the extended structure of the framework resulted in a decrease in the HOMO-LUMO gap. The experimental and computational studies reveal the important influence of intraplanar and interplanar interactions on photophysical properties in 2D COFs.

In Chapter 5, we modified the COF TpBpy with nickel(II) and investigated its application as an electrocatalyst for 5-hydroxymethylfufural (HMF) oxidation. Unlike TpBpy characterized in Chapter 4, TpBpy thin films were prepared by an interfacial crystallization strategy. The films were transferred to conductive substrates and then post-synthetically modified by nickel acetate. Similar to redox-active MOFs, the resulting TpBpy-Ni COF film exhibited redox conductivity. TpBpy-Ni showed good catalytic activity for HMF oxidation under basic conditions. This study suggests the great potential of functionalized COFs for electrochemical applications.

Description
Keywords
metal-organic framework, charge transfer, electrochemiluminescence, redox hopping, catalysis
Citation