Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Essays on the Management of Online Platforms: Bayesian Perspectives

    Thumbnail
    View/Open
    Gupta_D_D_2020.pdf (1.201Mb)
    Downloads: 294
    Date
    2020-08-06
    Author
    Gupta, Debjit
    Metadata
    Show full item record
    Abstract
    This dissertation presents three essays that focus on various aspects pertaining to the management of online platforms, defined as "digital services that facilitate interactions between two or more distinct, but interdependent sets of users (whether firms or individuals) who interact through the service via the Internet" (OECD, 2019). The interactions benefit both the users and the platform. Managing online platforms involves developing strategies for one or more of three value adding functions: (a) lowering search costs for the parties connecting through the platform, (b) providing a technology infrastructure that facilitates transactions at scale by sharing both demand and supply side costs; and (c) locating other audiences or consumers for the output that results from the transaction. The platform manager must manage these value adding functions. Thus, one important management task is to recognize potential asymmetries in the economic and/or psychological motivations of the transacting parties connected through the platform. In this dissertation, I empirically examine these issues in greater detail. The first essay, "Incentivizing User-Generated Content—A Double-Edged Sword: Evidence from Field Data and a Controlled Experiment," addresses the conundrum faced by online platform managers interested in crowdsourcing user-generated content (UGC) in prosocial contexts. The dilemma stems from the fact that offering monetary incentives to stimulate UGC contributions also has a damping effect on peer approval, which is an important source of non-monetary recognition valued by UGC contributors in prosocial contexts. The second essay, "Matching and Making in Matchmaking Platforms: A Structural Analysis," examines matchmaking platforms, focusing specifically on the problem of misaligned incentives between the platform and the agents. Based on data from the Ultimate Fighting Championship (UFC) on fighter characteristics, and pay-per-view revenues associated with specific bouts, we identify the potential for conflicts of interest and examine strategies that may be used to mitigate such problems. The third essay, "Matching and Making in Matching Markets: A Managerial Decision Calculus," extends the empirical model and analytical work to a class of commonly encountered one-sided matching market problems. It provides the conceptual outline of a decision calculus that allows managers to explore the revenue and profitability implications of adaptive changes to the tier structures and matching algorithms.
    General Audience Abstract
    The 21st century has witnessed the rise of the platform economy. Consumers routinely interact with online platforms ways in their day to day activities. For instance, they interact with platforms such as Quora, StackOverflow, Uber, and Airbnb to name only a few. Such platforms address a variety of needs starting from providing users with answers to a variety of questions to matching them with a range of service providers (e.g., for travel and dining needs). However, the rapid growth of the platform economy has created a knowledge gap for both consumers and platforms. The three essays in this dissertation attempt to contribute to the literature in this area. The first essay, "Incentivizing User-Generated Content—A Double-Edged Sword: Evidence from Field Data and a Controlled Experiment," examines how crowdsourcing contests influence the quantity and quality of user-generated content (UGC). Analyzing data from the popular question and answer website Quora, we find that offering monetary incentives to stimulate UGC contributions increases contributions but also has a simultaneous damping effect on peer endorsement, which is an important source of non-monetary recognition for UGC contributors in prosocial contexts. The second essay, "Matching and Making in Matchmaking Platforms: A Structural Analysis," examines matchmaking platforms, focusing on the problem of misaligned incentives between the platform and the agents. Based on data from the Ultimate Fighting Championship (UFC) on fighter characteristics, and pay-per-view revenues associated with specific bouts, we identify the potential for conflicts of interest and examine strategies that may be used to mitigate such problems. The third essay, "Matching and Making in Matching Markets: A Managerial Decision Calculus," extends the empirical model and analytical work to a class of commonly encountered one-sided matching market problems. It provides the conceptual outline of a decision calculus that allows managers to explore the revenue and profitability implications of adaptive changes to the tier structures and matching algorithms.
    URI
    http://hdl.handle.net/10919/99603
    Collections
    • Doctoral Dissertations [14904]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us