Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    From Theory to Practice: Deployment-grade Tools and Methodologies for Software Security

    Thumbnail
    View/Open
    Rahaman_S_D_2020.pdf (2.511Mb)
    Downloads: 741
    Date
    2020-08-25
    Author
    Rahaman, Sazzadur
    Metadata
    Show full item record
    Abstract
    Following proper guidelines and recommendations are crucial in software security, which is mostly obstructed by accidental human errors. Automatic screening tools have great potentials to reduce the gap between the theory and the practice. However, the goal of scalable automated code screening is largely hindered by the practical difficulty of reducing false positives without compromising analysis quality. To enable compile-time security checking of cryptographic vulnerabilities, I developed highly precise static analysis tools (CryptoGuard and TaintCrypt) that developers can use routinely. The main technical enabler for CryptoGuard is a set of detection algorithms that refine program slices by leveraging language-specific insights, where TaintCrypt relies on symbolic execution-based path-sensitive analysis to reduce false positives. Both CryptoGuard and TaintCrypt uncovered numerous vulnerabilities in real-world software, which proves the effectiveness. Oracle has implemented our cryptographic code screening algorithms for Java in its internal code analysis platform, Parfait, and detected numerous vulnerabilities that were previously unknown. I also designed a specification language named SpanL to easily express rules for automated code screening. SpanL enables domain experts to create domain-specific security checking. Unfortunately, tools and guidelines are not sufficient to ensure baseline security in internet-wide ecosystems. I found that the lack of proper compliance checking induced a huge gap in the payment card industry (PCI) ecosystem. I showed that none of the PCI scanners (out of 6), we tested are fully compliant with the guidelines, issuing certificates to merchants that still have major vulnerabilities. Consequently, 86% (out of 1,203) of the e-commerce websites we tested, are non-compliant. To improve the testbeds in the light of our work, the PCI Security Council shared a copy of our PCI measurement paper to the dedicated companies that host, manage, and maintain the PCI certification testbeds.
    General Audience Abstract
    Automatic screening tools have great potentials to reduce the gap between the theory and the practice of software security. However, the goal of scalable automated code screening is largely hindered by the practical difficulty of reducing false positives without compromising analysis quality. To enable compile-time security checking of cryptographic vulnerabilities, I developed highly precise static analysis tools (CryptoGuard and TaintCrypt) that developers can use routinely. Both CryptoGuard and TaintCrypt uncovered numerous vulnerabilities in real-world software, which proves the effectiveness. Oracle has implemented our cryptographic code screening algorithms for Java in its internal code analysis platform, Parfait, and detected numerous vulnerabilities that were previously unknown. I also designed a specification language named SpanL to easily express rules for automated code screening. SpanL enables domain experts to create domain-specific security checking. Unfortunately, tools and guidelines are not sufficient to ensure baseline security in internet-wide ecosystems. I found that the lack of proper compliance checking induced a huge gap in the payment card industry (PCI) ecosystem. I showed that none of the PCI scanners (out of 6), we tested are fully compliant with the guidelines, issuing certificates to merchants that still have major vulnerabilities. Consequently, 86% (out of 1,203) of the e-commerce websites we tested, are non-compliant. To improve the testbeds in the light of our work, the PCI Security Council shared a copy of our PCI measurement paper to the dedicated companies that host the PCI certification testbeds.
    URI
    http://hdl.handle.net/10919/99849
    Collections
    • Doctoral Dissertations [14904]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us