Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Going Deeper with Images and Natural Language

    Thumbnail
    View/Open
    Ma_Y_D_2019.pdf (52.73Mb)
    Downloads: 107
    Supporting documents (68.56Kb)
    Downloads: 1
    Date
    2019-03-29
    Author
    Ma, Yufeng
    Metadata
    Show full item record
    Abstract
    One aim in the area of artificial intelligence (AI) is to develop a smart agent with high intelligence that is able to perceive and understand the complex visual environment around us. More ambitiously, it should be able to interact with us about its surroundings in natural languages. Thanks to the progress made in deep learning, we've seen huge breakthroughs towards this goal over the last few years. The developments have been extremely rapid in visual recognition, in which machines now can categorize images into multiple classes, and detect various objects within an image, with an ability that is competitive with or even surpasses that of humans. Meanwhile, we also have witnessed similar strides in natural language processing (NLP). It is quite often for us to see that now computers are able to almost perfectly do text classification, machine translation, etc. However, despite much inspiring progress, most of the achievements made are still within one domain, not handling inter-domain situations. The interaction between the visual and textual areas is still quite limited, although there has been progress in image captioning, visual question answering, etc. In this dissertation, we design models and algorithms that enable us to build in-depth connections between images and natural languages, which help us to better understand their inner structures. In particular, first we study how to make machines generate image descriptions that are indistinguishable from ones expressed by humans, which as a result also achieved better quantitative evaluation performance. Second, we devise a novel algorithm for measuring review congruence, which takes an image and review text as input and quantifies the relevance of each sentence to the image. The whole model is trained without any supervised ground truth labels. Finally, we propose a brand new AI task called Image Aspect Mining, to detect visual aspects in images and identify aspect level rating within the review context. On the theoretical side, this research contributes to multiple research areas in Computer Vision (CV), Natural Language Processing (NLP), interactions between CVandNLP, and Deep Learning. Regarding impact, these techniques will benefit related users such as the visually impaired, customers reading reviews, merchants, and AI researchers in general.
    URI
    http://hdl.handle.net/10919/99993
    Collections
    • Doctoral Dissertations [14904]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us