NMR Applications in Soft Materials Science:  Correlation of Structure, Dynamics, and Transport

dc.contributor.authorChen, Yingen
dc.contributor.committeechairMadsen, Louis A.en
dc.contributor.committeememberMorris, John R.en
dc.contributor.committeememberTissue, Brian M.en
dc.contributor.committeememberDorn, Harry C.en
dc.contributor.departmentChemistryen
dc.date.accessioned2017-02-27T07:00:16Zen
dc.date.available2017-02-27T07:00:16Zen
dc.date.issued2015-09-05en
dc.description.abstractThis dissertation aims to investigate and correlate structure, dynamics and transport properties of several novel soft materials systems using multiple Nuclear Magnetic Resonance (NMR) methodologies, including solid-state NMR (SSNMR), diffusometry, and imaging, and with the help of X-ray scattering. First, we report the investigation of structure and dynamics of three polymeric membranes: hydroxyalkyl-containing imidazolium homopolymers, poly(arylene ether sulfone) segmented copolymers, and disulfonated poly(arylene ether sulfone) random copolymers using a wide array of SSNMR techniques, including: 1) ¹³C cross-polarization magic angle spinning (CPMAS) with varying cross-polarization (CP) contact time, 2) ¹³C single-pulse magic angle spinning (MAS) with varying delay time, 3) ²³Na single-pulse MAS, 4) two dimensional phaseadjusted spinning sideband (2D PASS), 5) proton spin−lattice relaxation (T₁), 6) rotating frame spin−lattice relaxation (T₁ρ), and 7) center-band-only detection of exchange (CODEX). These various types of SSNMR spectroscopic methods provide a wealth of structural and dynamic information over a wide range of time scales from a few nanoseconds to seconds. We further present a picture of rich structural and transport behaviors in supramolecular assemblies formed by amphiphilic wedge molecules using a combination of ²³Na solid-state NMR, ¹H/²H PFG NMR diffusion, relaxation and grazing-incidence small-angle X-ray scattering. Our results show that the liquid crystalline domains in these materials undergo a transition from columnar to bicontinuous cubic phases with a simple increase in humidity, while the amorphous domain boundaries consist of individual wedge molecules with a significant fraction (~ 10%) of total wedge molecules. Multiple-component diffusion of both wedges and water further confirms the structural and dynamic heterogeneity, with the bicontinous cubic phase being able to facilitate much faster water and ion transport than the columnar phase. We then develop a quantitative approach to probe the migration of two novel “theranostic” polymeric agents (combining “therapeutic” and “diagnostic” functions) into bulk hydrogels using two distinct time-resolved magnetic resonance imaging (MRI) methods. To the best of our knowledge, this is the first work that combines time-resolved MRI experiments to reliably quantify diffusivity of paramagnetic and superparamagnetic nanoparticles in bulk biological media. Our results agree closely with those obtained from fluorescence techniques, yet the capability of our approach allows the analysis of actual nanoparticles diffusion through biogels on mm to cm scales during a range of time periods. Finally, we employ a combination of NMR techniques to obtain a comprehensive understanding of ion clustering and transport behaviors of ionic liquids inside the benchmark ionic polymer Nafion. Spin relaxation shows that anion relaxation is more influenced by the fixed sulfonate groups than cation relaxation. 2D ¹H-¹⁹F heteronuclear Overhauser effect spectroscopy (HOESY) and 1D ¹⁹F¹⁹F selective nuclear Overhauser effect (NOE) spectroscopy confirm our assumption of the formation of ion clusters at low water content in the ionomer. While we observe non-restricted diffusion behavior for cations, anion diffusion is strongly restricted both between domain boundaries and within domains in the absence of water. The restricted anion diffusion can serve as a reliable probe for detailed multiscale structures of the ionomer.en
dc.description.degreePh. D.en
dc.format.mediumETDen
dc.identifier.othervt_gsexam:6065en
dc.identifier.urihttp://hdl.handle.net/10919/75177en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectSolid-state NMRen
dc.subjectPFG diffusometryen
dc.subjectImagingen
dc.subjectSpin relaxationen
dc.subjectDiffusionen
dc.subjectIonic liquidsen
dc.subjectPolymeren
dc.subjectSupramolecular assemblyen
dc.subjectNanoparticleen
dc.titleNMR Applications in Soft Materials Science:  Correlation of Structure, Dynamics, and Transporten
dc.typeDissertationen
thesis.degree.disciplineChemistryen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Chen_Y_D_2015.pdf
Size:
8.06 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Chen_Y_D_2015_support_1.pdf
Size:
4.35 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents