Revisiting the Large n (Sample Size) Problem: How to Avert Spurious Significance Results

dc.contributor.authorSpanos, Arisen
dc.date.accessioned2024-02-01T14:34:11Zen
dc.date.available2024-02-01T14:34:11Zen
dc.date.issued2023-12-05en
dc.date.updated2023-12-22T13:45:08Zen
dc.description.abstractAlthough large data sets are generally viewed as advantageous for their ability to provide more precise and reliable evidence, it is often overlooked that these benefits are contingent upon certain conditions being met. The primary condition is the approximate validity (statistical adequacy) of the probabilistic assumptions comprising the statistical model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">M</mi><mi mathvariant="bold-italic">&theta;</mi></msub><mrow><mo>(</mo><mi mathvariant="bold">x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> applied to the data. In the case of a statistically adequate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">M</mi><mi mathvariant="bold-italic">&theta;</mi></msub><mrow><mo>(</mo><mi mathvariant="bold">x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and a given significance level <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>&alpha;</mi></semantics></math></inline-formula>, as <i>n</i> increases, the power of a test increases, and the <i>p</i>-value decreases due to the inherent trade-off between type I and type II error probabilities in frequentist testing. This trade-off raises concerns about the reliability of declaring &lsquo;statistical significance&rsquo; based on conventional significance levels when <i>n</i> is exceptionally large. To address this issue, the author proposes that a principled approach, in the form of post-data severity (SEV) evaluation, be employed. The SEV evaluation represents a post-data error probability that converts unduly data-specific &lsquo;accept/reject <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mn>0</mn></msub></semantics></math></inline-formula> results&rsquo; into evidence either supporting or contradicting inferential claims regarding the parameters of interest. This approach offers a more nuanced and robust perspective in navigating the challenges posed by the large <i>n</i> problem.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSpanos, A. Revisiting the Large n (Sample Size) Problem: How to Avert Spurious Significance Results. Stats 2023, 6, 1323-1338.en
dc.identifier.doihttps://doi.org/10.3390/stats6040081en
dc.identifier.urihttps://hdl.handle.net/10919/117810en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectlarge n problemen
dc.subjectNeyman–Pearson testingen
dc.subjectp-valueen
dc.subjectpost-data severity evaluationen
dc.subjectspurious statistical significanceen
dc.titleRevisiting the Large n (Sample Size) Problem: How to Avert Spurious Significance Resultsen
dc.title.serialStatisticsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
stats-06-00081-v2.pdf
Size:
402.44 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: