Journal Articles, Multidisciplinary Digital Publishing Institute (MDPI)

Permanent URI for this collection


Recent Submissions

Now showing 1 - 20 of 1627
  • 'New' Media: Decolonial Opportunities or Digital Colonialism?
    Veracini, Lorenzo; Weaver-Hightower, Rebecca (MDPI, 2023-12-21)
    Can one colonise or liberate cyberspace, space that is not actually space [...]
  • SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic Mice
    Pavan, María Florencia; Bok, Marina; Betanzos San Juan, Rafael; Malito, Juan Pablo; Marcoppido, Gisela Ariana; Franco, Diego Rafael; Militelo, Daniela Ayelen; Schammas, Juan Manuel; Bari, Sara Elizabeth; Stone, William; López, Krisangel; Porier, Danielle LaBrie; Muller, John Anthony; Auguste, Albert Jonathan; Yuan, Lijuan; Wigdorovitz, Andrés; Parreño, Viviana Gladys; Ibañez, Lorena Itat (MDPI, 2024-01-25)
    Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.
  • A Mechanistic Model of Perceptual Binding Predicts That Binding Mechanism Is Robust against Noise
    Kraikivski, Pavel (MDPI, 2024-01-31)
    The concept of the brain’s own time and space is central to many models and theories that aim to explain how the brain generates consciousness. For example, the temporo-spatial theory of consciousness postulates that the brain implements its own inner time and space for conscious processing of the outside world. Furthermore, our perception and cognition of time and space can be different from actual time and space. This study presents a mechanistic model of mutually connected processes that encode phenomenal representations of space and time. The model is used to elaborate the binding mechanism between two sets of processes representing internal space and time, respectively. Further, a stochastic version of the model is developed to investigate the interplay between binding strength and noise. Spectral entropy is used to characterize noise effects on the systems of interacting processes when the binding strength between them is varied. The stochastic modeling results reveal that the spectral entropy values for strongly bound systems are similar to those for weakly bound or even decoupled systems. Thus, the analysis performed in this study allows us to conclude that the binding mechanism is noise-resilient.
  • A Scoping Review of Food Systems Governance Frameworks and Models to Develop a Typology for Social Change Movements to Transform Food Systems for People and Planetary Health
    Kraak, Vivica; Niewolny, Kimberly L. (MDPI, 2024-02-09)
    Effective governance is essential to transform food systems and achieve the United Nations (UN) Sustainable Development Goals 2030. Different political ideologies and paradigms inhibit or drive social change movements. This study examined how food systems governance has been described. Thereafter, we reviewed graphic frameworks and models to develop a typology for civil society actors to catalyze social change movements to transform food systems for people and the planet. The scoping review involved (1) formulating research questions; (2) developing a search strategy to identify evidence from four English-language electronic databases and reports, 2010–2023; and (3–4) selecting, analyzing, and synthesizing evidence into a narrative review. Results yielded 5715 records, and 36 sources were selected that described and depicted graphic frameworks and models examined for purpose, scale, political ideology, paradigm, discourse, principles, governance, and democracy. Evidence was used to develop a graphic food systems governance typology with distinct political ideologies (i.e., neoliberal, reformist, progressive, radical); paradigms (i.e., maintain, reform, transition, transform); discourses (i.e., food enterprise, food security, food justice, food sovereignty); types of governance (i.e., multistakeholder, shared, self); and democracy (i.e., representative, participatory, deliberative). This proof-of-concept typology could be applied to examine how change agents use advocacy and activism to strengthen governance for sustainable diets, regenerative food systems, and planetary health.
  • Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats
    Bertotto, Luísa B.; Lampson-Stixrud, Dolly; Sinha, Anushka; Rohani, Nicki K.; Myer, Isabella; Zorrilla, Eric P. (MDPI, 2024-02-09)
    Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior. We hypothesized that inhibiting phosphodiesterase 10A (PDE10A), enriched in striatal MSNs, would reduce EtOH self-administration in rats with a history of chronic intermittent ethanol exposure. To test this, Wistar rats (n = 10/sex) with a history of chronic intermittent EtOH (CIE) vapor exposure received MR1916 (i.p., 0, 0.05, 0.1, 0.2, and 0.4 µmol/kg), a PDE10A inhibitor, before operant EtOH self-administration sessions. We determined whether MR1916 altered the expression of MSN markers (Pde10a, Drd1, Drd2, Penk, and Tac1) and immediate-early genes (IEG) (Fos, Fosb, ΔFosb, and Egr1) in EtOH-naïve (n = 5–6/grp) and post-CIE (n = 6–8/grp) rats. MR1916 reduced the EtOH self-administration of high-drinking, post-CIE males, but increased it at a low, but not higher, doses, in females and low-drinking males. MR1916 increased Egr1, Fos, and FosB in the DLS, modulated by sex and alcohol history. MR1916 elicited dMSN vs. iMSN markers differently in ethanol-naïve vs. post-CIE rats. High-drinking, post-CIE males showed higher DLS Drd1 and VMS IEG expression. Our results implicate a role and potential striatal bases of PDE10A inhibitors to influence post-dependent drinking.
  • Improved Canker Processing and Viability Droplet Digital PCR Allow Detection of Erwinia amylovora Viable Nonculturable Cells in Apple Bark
    Dhar, Bidhan Chandra; Delgado Santander, Ricardo; Aćimović, Srđan G. (MDPI, 2024-02-12)
    The bacterium Erwinia amylovora causes fire blight and continues to threaten global commercial apple and pear production. Conventional microbiology techniques cannot accurately determine the presence of live pathogen cells in fire blight cankers. Several factors may prevent E. amylovora from growing on solid culture media, including competing microbiota and the release of bacterial-growth-inhibitory compounds by plant material during sample processing. We previously developed a canker processing methodology and a chip-based viability digital PCR (v-dPCR) assay using propidium monoazide (PMA) to bypass these obstacles. However, sample analysis was still time-consuming and physically demanding. In this work, we improved the previous protocol using an automatic tissue homogenizer and transferred the chip-based v-dPCR to the BioRad QX200 droplet dPCR (ddPCR) platform. The improved sample processing method allowed the simultaneous, fast, and effortless processing of up to six samples. Moreover, the transferred v-ddPCR protocol was compatible with the same PMA treatment and showed a similar dynamic range, from 7.2 × 102 to 7.6 × 107 cells mL−1, as the previous v-dPCR. Finally, the improved protocol allowed, for the first time, the detection of E. amylovora viable but nonculturable (VBNC) cells in cankers and bark tissues surrounding cankers. Our v-ddPCR assay will enable new ways to evaluate resistant pome fruit tree germplasm, further dissect the E. amylovora life cycle, and elucidate E. amylovora physiology, epidemiology, and new options for canker management.
  • Microstructures and Corrosion Properties of Wire Arc Additive Manufactured Copper–Nickel Alloys
    Song, Jie; Jimenez, Xavier A.; To, Albert C.; Fu, Yao (MDPI, 2024-02-14)
    The 70/30 copper–nickel alloy is used mainly in critical parts with more demanding conditions in marine settings. There is a need for innovative methods that offer fast production and cost-effectiveness in order to supplement current copper–nickel alloy manufacturing processes. In this study, we employ wire arc additive manufacturing (WAAM) to fabricate the 70/30 copper–nickel alloy. The as-built microstructure is characterized by columnar grains with prominent dendrites and chemical segregation in the inter-dendritic area. The aspect ratio of the columnar grain increases with increasing travel speed (TS) at the same wire feed speed (WFS). This is in contrast with the equiaxed grain structure, with a more random orientation, of the conventional sample. The sample built with a WFS of 8 m/min, TS of 1000 mm/min, and a track distance of 3.85 mm exhibits superior corrosion properties in the 3.5 wt% NaCl solution when compared with the conventional sample, as evidenced by a higher film resistance and breakdown potential, along with a lower passive current density of the WAAM sample. The corrosion morphology reveals the critical roles played by the nickel element that is unevenly distributed between the dendrite core and inter-dendritic area.
  • Phase I/II Trial of Urokinase Plasminogen Activator-Targeted Oncolytic Newcastle Disease Virus for Canine Intracranial Tumors
    Rossmeisl, John H.; King, Jamie N.; Robertson, John L.; Weger-Lucarelli, James; Elankumaran, Subbiah (MDPI, 2024-01-29)
    Neurotropic oncolytic viruses are appealing agents to treat brain tumors as they penetrate the blood–brain barrier and induce preferential cytolysis of neoplastic cells. The pathobiological similarities between human and canine brain tumors make immunocompetent dogs with naturally occurring tumors attractive models for the study of oncolytic virotherapies. In this dose-escalation/expansion study, an engineered Lasota NDV strain targeting the urokinase plasminogen activator system (rLAS-uPA) was administered by repetitive intravenous infusions to 20 dogs with intracranial tumors with the objectives of characterizing toxicities, immunologic responses, and neuroradiological anti-tumor effects of the virus for up to 6 months following treatment. Dose-limiting toxicities manifested as fever, hematologic, and neurological adverse events, and the maximum tolerated dose (MTD) of rLAS-uPA was 2 × 107 pfu/mL. Mild adverse events, including transient infusion reactions, diarrhea, and fever were observed in 16/18 of dogs treated at or below MTD. No infectious virus was recoverable from body fluids. Neutralizing antibodies to rLAS-uPA were present in all dogs by 2 weeks post-treatment, and viral genetic material was detected in post-treatment tumors from six dogs. Tumor volumetric reductions occurred in 2/11 dogs receiving the MTD. Systemically administered rLAS-uPA NDV was safe and induced anti-tumor effects in canine brain tumors, although modifications to evade host anti-viral immunity are needed to optimize this novel therapy.
  • Exerkines, Nutrition, and Systemic Metabolism
    Watkins, Bruce A.; Smith, Brenda J.; Volpe, Stella Lucia; Shen, Chwan-Li (MDPI, 2024-01-30)
    The cornerstones of good health are exercise, proper food, and sound nutrition. Physical exercise should be a lifelong routine, supported by proper food selections to satisfy nutrient requirements based on energy needs, energy management, and variety to achieve optimal metabolism and physiology. The human body is sustained by intermediary and systemic metabolism integrating the physiologic processes for cells, tissues, organs, and systems. Recently, interest in specific metabolites, growth factors, cytokines, and hormones called exerkines has emerged to explain cooperation between nutrient supply organs and the brain during exercise. Exerkines consist of different compounds described as signaling moiety released during and after exercise. Examples of exerkines include oxylipin 12, 13 diHOME, lipid hormone adiponectin, growth factor BDNF, metabolite lactate, reactive oxygen species (ROS), including products of fatty acid oxidation, and cytokines such as interleukin-6. At this point, it is believed that exerkines are immediate, fast, and long-lasting factors resulting from exercise to support body energy needs with an emphasis on the brain. Although exerkines that are directly a product of macronutrient metabolism such as lactate, and result from catabolism is not surprising. Furthermore, other metabolites of macronutrient metabolism seem to be candidate exerkines. The exerkines originate from muscle, adipose, and liver and support brain metabolism, energy, and physiology. The purpose of this review is to integrate the actions of exerkines with respect to metabolism that occurs during exercise and propose other participating factors of exercise and brain physiology. The role of diet and macronutrients that influence metabolism and, consequently, the impact of exercise will be discussed. This review will also describe the evidence for PUFA, their metabolic and physiologic derivatives endocannabinoids, and oxylipins that validate them being exerkines. The intent is to present additional insights to better understand exerkines with respect to systemic metabolism.
  • Prognostic Factors and Nomogram for Choroid Plexus Tumors: A Population-Based Retrospective Surveillance, Epidemiology, and End Results Database Analysis
    Bhutada, Abhishek S.; Adhikari, Srijan; Cuoco, Joshua A.; In, Alexander; Rogers, Cara M.; Jane, John A.; Marvin, Eric A. (MDPI, 2024-01-31)
    Background: Choroid plexus tumors (CPTs) are rare neoplasms found in the central nervous system, comprising 1% of all brain tumors. These tumors include choroid plexus papilloma (CPP), atypical choroid plexus papilloma (aCPP), and choroid plexus carcinoma (CPC). Although gross total resection for choroid plexus papillomas (CPPs) is associated with long-term survival, there is a scarcity of prospective data concerning the role and sequence of neoadjuvant therapy in treating aCPP and CPC. Methods: From the years 2000 to 2019, 679 patients with CPT were identified from the Surveillance, Epidemiology, and End Result (SEER) database. Among these patients, 456 patients had CPP, 75 patients had aCPP, and 142 patients had CPC. Univariate and multivariable Cox proportional hazard models were run to identify variables that had a significant impact on the primary endpoint of overall survival (OS). A predictive nomogram was built for patients with CPC to predict 5-year and 10-year survival probability. Results: Histology was a significant predictor of OS, with 5-year OS rates of 90, 79, and 61% for CPP, aCPP, and CPC, respectively. Older age and African American race were prognostic for worse OS for patients with CPP. Older age was also associated with reduced OS for patients with aCPP. American Indian/Alaskan Native race was linked to poorer OS for patients with CPC. Overall, treatment with gross total resection or subtotal resection had no difference in OS in patients with CPP or aCPP. Meanwhile, in patients with CPC, gross total resection (GTR) was associated with significantly better OS than subtotal resection (STR) only. However, there is no difference in OS between patients that receive GTR and patients that receive STR with adjuvant therapy. The nomogram for CPC considers types of treatments received. It demonstrates acceptable accuracy in estimating survival probability at 5-year and 10-year intervals, with a C-index of 0.608 (95% CI of 0.446 to 0.77). Conclusions: This is the largest study on CPT to date and highlights the optimal treatment strategies for these rare tumors. Overall, there is no difference in OS with GTR vs. STR in CPP or aCPP. Furthermore, OS is equivalent for CPC with GTR and STR plus adjuvant therapy.
  • Food Waste from Campus Dining Hall as a Potential Feedstock for 2,3-Butanediol Production via Non-Sterilized Fermentation
    Caldwell, Alicia; Su, Xueqian; Jin, Qing; Hemphill, Phyllicia; Jaha, Doaa; Nard, Sonecia; Tiriveedhi, Venkataswarup; Huang, Haibo; OHair, Joshua (MDPI, 2024-01-31)
    Food waste is a major issue that is increasingly affecting our environment. More than one-third of food is wasted, resulting in over $400 billion in losses to the U.S. economy. While composting and other small recycling practices are encouraged from person-to-person, it is not enough to balance the net loss of 80 million tons per year. Currently, one of the most promising routes for reducing food waste is through microbial fermentation, which can convert the waste into valuable bioproducts. Among the compounds produced from fermentation, 2,3-butanediol (2,3-BDO) has gained interest recently due to its molecular structure as a building block for many other derivatives used in perfumes, synthetic rubber, fumigants, antifreeze agents, fuel additives, and pharmaceuticals. Waste feedstocks, such as food waste, are a potential source of renewable energy due to their lack of cost and availability. Food waste also possesses microbial requirements for growth such as carbohydrates, proteins, fats, and more. However, food waste is highly inconsistent and the variability in composition may hinder its ability to be a stable source for bioproducts such as 2,3-BDO. This current study focuses specifically on post-consumer food waste and how 2,3-BDO can be produced through a non-model organism, Bacillus licheniformis YNP5-TSU during non-sterile fermentation. From the dining hall at Tennessee State University, 13 food waste samples were collected over a 6-month period and the compositional analysis was performed. On average, these samples consisted of fat (19.7%), protein (18.7%), ash (4.8%), fiber (3.4%), starch (27.1%), and soluble sugars (20.9%) on a dry basis with an average moisture content of 34.7%. Food waste samples were also assessed for their potential production of 2,3-BDO during non-sterile thermophilic fermentation, resulting in a max titer of 12.12 g/L and a 33% g/g yield of 2,3-BDO/carbohydrates. These findings are promising and can lead to the better understanding of food waste as a defined feedstock for 2,3-BDO and other fermentation end-products.
  • An Econometric Analysis to Explore the Temporal Variability of the Factors Affecting Crash Severity Due to COVID-19
    Alrumaidhi, Mubarak; Rakha, Hesham A. (MDPI, 2024-02-01)
    This study utilizes multilevel ordinal logistic regression (M-OLR), an approach that accounts for spatial heterogeneity, to assess the dynamics of crash severity in Virginia, USA, over the years 2018 to 2023. This period was notably influenced by the COVID-19 pandemic and its associated stay-at-home orders, which significantly altered traffic behaviors and crash severity patterns. This study aims to evaluate the pandemic’s impact on crash severity and examine the consequent changes in driver behaviors. Despite a reduction in total crashes, a worrying increase in the proportion of severe injuries is observed, suggesting that less congested roads during the pandemic led to riskier driving behaviors, notably increased speed violations. This research also highlights heightened risks for vulnerable road users such as pedestrians, cyclists, and motorcyclists, with changes in transportation habits during the pandemic leading to more severe crashes involving these groups. Additionally, this study emphasizes the consistent influence of environmental and roadway features, like weather conditions and traffic signals, in determining crash outcomes. These findings offer vital insights for road safety policymakers and urban planners, indicating the necessity of adaptive road safety strategies in response to changing societal norms and behaviors. The research underscores the critical role of individual behaviors and mental states in traffic safety management and advocates for holistic approaches to ensure road safety in a rapidly evolving post-pandemic landscape.
  • Load-Out and Hauling Cost Increase with Increasing Feedstock Production Area
    Cundiff, John S.; Grisso, Robert D.; Resop, Jonathan P.; Ignosh, John (MDPI, 2023-09-29)
    The impact of average delivered feedstock cost on the overall financial viability of biorefineries is the focus of this study, and it is explored by modeling the efficient delivery of round bales of herbaceous biomass to a hypothetical biorefinery in the Piedmont, a physiographic region across five states in the Southeastern USA. The complete database (nominal 150,000 Mg/y biorefinery capacity) had 199 satellite storage locations (SSLs) within a 50-km radius of Gretna, a town in South Central Virginia USA, chosen as the biorefinery location. Two additional databases, nominal 50,000 Mg/y (29.1-km radius, 71 SSLs) and nominal 100,000 Mg/y (40-km radius, 133 SSLs) were created, and delivery was simulated for a 24/7 operation, 48 wk/y. The biorefinery capacities were 15.5, 31.1, and 47.3 bales/h for the 50,000, 100,000, and 150,000 Mg/y databases, respectively. Three load-outs operated simultaneously to supply the 15.5 bale/h biorefinery, six for the 31.1 bale/h biorefinery, and nine for the 47.3 bale/h biorefinery. The required truck fleet was three, six, and nine trucks, respectively. The cost for load-out and delivery was 11.63 USD/Mg for the 50,000 Mg/y biorefinery. It increased to 12.46 and 12.99 USD/Mg as the biorefinery capacity doubled to 100,000 Mg/y and tripled to 150,000 Mg/y. Most of the cost increase was due to an increase in truck cost as haul distance increased with the radius of the feedstock supply area. There was a small increase in load-out cost due to an increased cost for travel to support the load-out operations. The less-than-expected increase in average hauling cost for the increase in feedstock production area highlights the influence of efficient scheduling achieved with central control of the truck fleet.
  • The Implications of Human Mobility and Accessibility for Transportation and Livable Cities
    Sanchez, Thomas W.; Ye, Xinyue (MDPI, 2023-10-12)
    Understanding human movement and transportation accessibility has become paramount in shaping the very fabric of our communities [...]
  • A Review on Tribocorrosion Behavior of Aluminum Alloys: From Fundamental Mechanisms to Alloy Design Strategies
    Zhang, Zhengyu; Dandu, Raja Shekar Bhupal; Klu, Edwin Eyram; Cai, Wenjun (MDPI, 2023-10-18)
    Tribocorrosion, a research field that has been evolving for decades, has gained renewed attention in recent years, driven by increased demand for wear- and corrosion-resistant materials from biomedical implants, nuclear power generation, advanced manufacturing, batteries, marine and offshore industries, etc. In the United States, wear and corrosion are estimated to cost nearly USD 300 billion per year. Among various important structural materials, passive metals such as aluminum alloys are most vulnerable to tribocorrosion due to the wear-accelerated corrosion as a result of passive film removal. Thus, designing aluminum alloys with better tribocorrosion performance is of both scientific and practical importance. This article reviews five decades of research on the tribocorrosion of aluminum alloys, from experimental to computational studies. Special focus is placed on two aspects: (1) The effects of alloying and grain size on the fundamental wear, corrosion, and tribocorrosion mechanisms; and (2) Alloy design strategies to improve the tribocorrosion resistance of aluminum alloys. Finally, the paper sheds light on the current challenges faced and outlines a few future research directions in the field of tribocorrosion of aluminum alloys.
  • A Comparison of Forest Biomass and Conventional Harvesting Effects on Estimated Erosion, Best Management Practice Implementation, Ground Cover, and Residual Woody Debris in Virginia
    Garren, Austin M.; Bolding, Michael Chad; Barrett, Scott M.; Hawks, Eric M.; Aust, Wallace Michael; Coates, Thomas Adam (MDPI, 2023-11-17)
    Expanding markets for renewable energy feedstocks have increased demand for woody biomass. Concerns associated with forest biomass harvesting include increased erosion, the applicability of conventional forestry Best Management Practices (BMPs) for protecting water quality, and reduced woody debris retention for soil nutrients and cover. We regionally compared the data and results from three prior independent studies that estimated erosion, BMP implementation, and residual woody debris following biomass and conventional forest harvests in the Mountains, Piedmont, and Coastal Plain of Virginia. Estimated erosion was higher in the Mountains due to steep slopes and operational challenges. Mountain skid trails were particularly concerning, comprising only 8.47% of the total area but from 37.9 to 81.1% of the total site-wide estimated erosion. BMP implementation varied by region and harvest type, with biomass sites having better implementation than conventional sites, and conventional Mountain sites having lower implementation than other regions. Sufficient woody debris remained for BMPs on both harvest types in all regions, with conventional Mountain sites retaining twice that of Coastal Plain sites. BMPs reduced the estimated erosion on both site types suggesting increased implementation could reduce potential erosion in problematic areas. Therefore, proper BMP implementation should be ensured, particularly in Mountainous terrain, regardless of harvest type.
  • Fetal Programming and Its Effects on Meat Quality of Nellore Bulls
    Christofaro Fernandes, Arícia; Beline, Mariane; Polizel, Guilherme Henrique Gebim; Cavalcante Cracco, Roberta; Ferreira Dias, Evandro Fernando; Furlan, Édison; da Luz e Silva, Saulo; de Almeida Santana, Miguel Henrique (MDPI, 2023-11-24)
    This work aimed to evaluate the effects of prenatal nutritional stimulation at different pregnancy stages on carcass traits and meat quality in bovine progeny. For this purpose, 63 Nellore bulls, born from cows submitted to three nutritional plans, were used: not programmed (NP), which did not receive protein supplementation; partially programmed (PP), which had protein-energy supplementation (0.3% of mean body weight of each batch) only in the final third of pregnancy; and full programming (FP), which received supplementation (0.3% of mean body weight of each batch) throughout pregnancy. The averages of parameters were submitted to the ANOVA, and the supplementation periods, which were different when p value < 0.05, were compared. Carcass weights and rib eye area (REA) did not differ between treatments (p > 0.05), but subcutaneous fat thickness (SFT) showed a tendency (p = 0.08) between groups. For lipids and marbling, no differences were found (p > 0.05). In the analyses of maturation time and shelf life, no difference was observed between treatments. However, there was a tendency between treatments at 14 days of maturation time for cooking loss (CL) (p = 0.08). Treatments did not affect shear force in the progenies (p > 0.05). Fetal programming had no effect on the meat quality of Nellore bulls.
  • Identification of a Novel Hepacivirus in Southeast Asian Shrew (Crocidura fuliginosa) from Yunnan Province, China
    Guo, Ling; Li, Bei; Han, Peiyu; Dong, Na; Zhu, Yan; Li, Fuli; Si, Haorui; Shi, Zhengli; Wang, Bo; Yang, Xinglou; Zhang, Yunzhi (MDPI, 2023-11-28)
    The genus Hepacivirus contains single-stranded positive-sense RNA viruses belonging to the family Flaviviridae, which comprises 14 species. These 14 hepaciviruses have been found in different mammals, such as primates, dogs, bats, and rodents. To date, Hepacivirus has not been reported in the shrew genus of Crocidura. To study the prevalence and genetic evolution of Hepacivirus in small mammals in Yunnan Province, China, molecular detection of Hepacivirus in small mammals from Yunnan Province during 2016 and 2017 was performed using reverse-transcription polymerase chain reaction (RT-PCR). Our results showed that the overall infection rate of Hepacivirus in small mammals was 0.12% (2/1602), and the host animal was the Southeast Asian shrew (Crocidura fuliginosa) (12.5%, 2/16). Quantitative real-time PCR showed that Hepacivirus had the highest viral RNA copy number in the liver. Phylogenetic analysis revealed that the hepaciviruses obtained in this study does not belong to any designated species of hepaciviruses and forms an independent clade. To conclude, a novel hepacivirus was identified for the first time in C. fuliginosa specimens from Yunnan Province, China. This study expands the host range and viral diversity of hepaciviruses.
  • Mobile Film Festival Africa and Postcolonial Activism
    Weaver-Hightower, Rebecca (MDPI, 2023-11-28)
    This paper enters into a debate of how new and potentially more accessible technologies might affect freedom of expression for heretofore disenfranchised peoples and postcolonial social and political development. This essay examines short films produced on camera phones by amateur African filmmakers for one of the many existent mobile phone film festivals: Mobile Film Festival Africa held in 2021. Mobile Film Festival, an annual and international festival of short-length movies, was founded in 2005 based on the principle “1 Mobile, 1 Minute, 1 Film”. Because of the highly destructive mining in Africa required to obtain the minerals necessary for mobile phone production, because of the Western narratives of progress mobile phone sales build upon, and because of the fact that mobile phones are instruments of capitalism that largely feed big Western countries, mobile phones are themselves tools of neocolonialism and digital colonialism. Thus, a film festival that markets itself as a means of social progress but that relies upon mobile phones in Africa provides an interesting and quite complicated case study. Two of the award-winning films from this festival recognize in different ways the complicated relationship between mobile phones and postcolonial activism.
  • Neurocognitive Correlates of Clinical Decision Making: A Pilot Study Using Electroencephalography
    Toy, Serkan; Shafiei, Somayeh B.; Ozsoy, Sahin; Abernathy, James; Bozdemir, Eda; Rau, Kristofer K.; Schwengel, Deborah A. (MDPI, 2023-11-30)
    The development of sound clinical reasoning, while essential for optimal patient care, can be quite an elusive process. Researchers typically rely on a self-report or observational measures to study decision making, but clinicians’ reasoning processes may not be apparent to themselves or outside observers. This study explored electroencephalography (EEG) to examine neurocognitive correlates of clinical decision making during a simulated American Board of Anesthesiology-style standardized oral exam. Eight novice anesthesiology residents and eight fellows who had recently passed their board exams were included in the study. Measures included EEG recordings from each participant, demographic information, self-reported cognitive load, and observed performance. To examine neurocognitive correlates of clinical decision making, power spectral density (PSD) and functional connectivity between pairs of EEG channels were analyzed. Although both groups reported similar cognitive load (p = 0.840), fellows outperformed novices based on performance scores (p < 0.001). PSD showed no significant differences between the groups. Several coherence features showed significant differences between fellows and residents, mostly related to the channels within the frontal, between the frontal and parietal, and between the frontal and temporal areas. The functional connectivity patterns found in this study could provide some clues for future hypothesis-driven studies in examining the underlying cognitive processes that lead to better clinical reasoning.