Sensing Atmospheric Winds from Quadrotor Motion

TR Number

Date

2020-06-01

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Wind observations that are critical for understanding meteorological processes occurring inside of the Earth's atmospheric boundary layer (ABL) are sparse due to limitations of conventional atmospheric sensors. In this dissertation, dynamic systems and estimation theory are combined with experimental methods to exploit the flight envelope of multirotor UAS for wind sensing. The parameters of three quadrotor motion models, consisting of a kinematic particle, a dynamic particle, and a dynamic rigid body models are developed to measure wind velocity in hovering flight. Wind tunnel and steady level flight tests are used to characterize kinematic and dynamic particle models. System identification stepwise regression and output error algorithms are used to determine the model structure and parameter estimates of rigid body models. The comparison of all three models demonstrates the rigid body model to have higher performance resolving slow-varying winds based on a frequency response analysis and field experiments conducted next to a 3-D sonic anemometer.

The dissertation also presents an extension of the rigid body wind estimation framework to profile the horizontal components of wind velocity in vertical steady ascending flight. The extension employed system identification to characterize five rigid body models for steady-ascending flight speeds increasing from 0 to 2 m/s in intervals of 0.5~m/s. State observers for wind profiling were synthesized using all five rigid body models. Performance assessments employing wind observations from in situ and remote sensors demonstrated model-based wind profiling results to be be in close agreement with ground-truth wind observations.

Finally, the rigid body wind sensing framework developed in this dissertations for multirotor UAS is employed to support science objectives for the Advanced Lagrangian Predictions for Hazards Assessment Project. Quadrotor wind measurements sampled at 10 m above sea level were used to characterize the leeway of a person in water for search and rescue scenarios. Leeway values determined from quadrotor wind measurements were found to be in close to leeway parameters previous published in the literature. This results demonstrates the utility of model-based wind sensing for multirotor UAS for providing wind velocity observations in complex environments where conventional wind observations are not readily available.

Description

Keywords

Unmanned Aircraft Systems, State Estimation, System Identification

Citation