Impact of Interactive Holographic Learning Environment for bridging Technical Skill Gaps of Future Smart Construction Engineering and Management Students
dc.contributor.author | Ogunseiju, Omobolanle Ruth | en |
dc.contributor.committeechair | Akanmu, Abiola Abosede | en |
dc.contributor.committeemember | Agee, Philip Ryan | en |
dc.contributor.committeemember | Bairaktarova, Diana | en |
dc.contributor.committeemember | Afsari, Kereshmeh | en |
dc.contributor.department | Myers-Lawson School of Construction | en |
dc.date.accessioned | 2022-07-26T08:00:22Z | en |
dc.date.available | 2022-07-26T08:00:22Z | en |
dc.date.issued | 2022-07-25 | en |
dc.description.abstract | The growth in the adoption of sensing technologies in the construction industry has triggered the need for graduating construction engineering students equipped with the necessary skills for deploying the technologies. For construction engineering students to acquire technical skills for implementing sensing technologies, it is pertinent to engage them in hands-on learning with the technologies. However, limited opportunities for hands-on learning experiences on construction sites and in some cases, high upfront costs of acquiring sensing technologies are encumbrances to equipping construction engineering students with the required technical skills. Inspired by opportunities offered by mixed reality, this study presents an interactive holographic learning environment that can afford learners an experiential opportunity to acquire competencies for implementing sensing systems on construction projects. Firstly, this study explores the required competencies for deploying sensing technologies on construction projects. The current state of sensing technologies in the industry and sensing technology education in construction engineering and management programs were investigated. The learning contents of the holographic learning environment were then driven by the identified competencies. Afterwards, a learnability study was conducted with industry practitioners already adopting sensing technologies to assess the learning environment. Feedback from the learnability study was implemented to further improve the learning environment after which a usability evaluation was conducted. To investigate the pedagogical value of the learning environment in construction education, a summative evaluation was conducted with construction engineering students. This research contributes to the definition of the domain-specific skills required of the future workforce for implementing sensing technologies in the construction industry and how such skills can be developed and enhanced within a mixed reality learning environment. Through concise outline and sequential design of the user interface, this study further revealed that knowledge scaffolding can improve task performance in a holographic learning environment. This study contributes to the body of knowledge by advancing immersive experiential learning discourses previously confined by technology. It opens a new avenue for both researchers and practitioners to further investigate the opportunities offered by mixed reality for future workforce development. | en |
dc.description.abstractgeneral | The construction industry is getting technically advanced and adopting various sensing technologies for improving construction project performance, reducing cost, and mitigating health and safety hazards. As a result, there is a demand in the industry for graduates that can deploy these sensing technologies on construction projects. However, for construction engineering students to acquire the skills for deploying sensing technologies, it is necessary that they are trained through hands-on interactions with these technologies. It is also imperative to take these students to construction sites for experiential learning of sensing technologies. This is difficult because most institutions often experience barriers and hindrances like weather constraints, difficulty in accessing jobsites, and schedule constraints. Also, while some institutions can afford these sensing technologies, others cannot, making it difficult to train students adequately. Due to the benefits of virtual learning environments (such as mixed reality and virtual reality), this study investigates a mixed reality (holographic) environment that can allow learners an experiential opportunity to acquire competencies for implementing sensing systems on construction projects. To achieve this, this research first investigated the required competencies such as skills, knowledge, and abilities for implementing sensing technologies on construction projects. The current state of sensing technologies in the industry and sensing technology education in construction engineering and management programs were investigated. The results from the first study in this research informed the learning contents of the learning environment. Afterwards, a learnability study was conducted with industry practitioners already adopting sensing technologies to assess the learning environment. Feedback from the learnability study was implemented to further improve the learning environment after which a usability evaluation was conducted. To investigate the pedagogical value of the learning environment in construction education, a summative evaluation was conducted with construction engineering students. The research contributes to the definition of the domain-specific skills required of the future workforce for implementing sensing technologies in the construction industry and how such skills can be developed and enhanced within a mixed reality learning environment. The design features such as the concise outline and sequential design of the user interface, further revealed that knowledge scaffolding can improve task performance in a mixed reality environment. This research further contributes to the body of knowledge by promoting immersive hands-on learning discourses previously confined by technology. It opens a new avenue for both researchers and practitioners to further investigate the opportunities offered by mixed reality for future workforce development. | en |
dc.description.degree | Doctor of Philosophy | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:35346 | en |
dc.identifier.uri | http://hdl.handle.net/10919/111356 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Sensing technologies | en |
dc.subject | Mixed reality | en |
dc.subject | workforce development | en |
dc.subject | Construction education | en |
dc.subject | experiential learning | en |
dc.title | Impact of Interactive Holographic Learning Environment for bridging Technical Skill Gaps of Future Smart Construction Engineering and Management Students | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Environmental Design and Planning | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Doctor of Philosophy | en |
Files
Original bundle
1 - 1 of 1