Modeling Fiber Orientation using Empirical Parameters Obtained from Non-Lubricated Squeeze Flow for Injection Molded Long Carbon Fiber Reinforced Nylon 6,6

TR Number
Date
2021-03-24
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Long fiber reinforced thermoplastic composites are used for creating lightweight, but mechanically sound, automotive components. Injection molding is a manufacturing technique commonly used for traditional thermoplastics due to its efficiency and ability to create complex geometries. Injection molding feedstock is often in the form of pellets. Therefore, fiber composites must be chopped for use in this manufacturing method. The fibers are cut to a length of 13 mm and then fiber attrition occurs during processing. The combination of chopping the fibers into pellets and fiber breakage creates a distribution of mostly short fiber lengths, with some longer fibers remaining. Discontinuous fiber reinforcements are classified as long for aspect ratios greater than 100. For glass fibers, that distinction occurs at a length of 1 mm, and for carbon fibers 0.5 mm. Traditional composite materials and manufacturing processes utilize continuous fibers with a controlled orientation and length. The use of chopped discontinuous fibers requires a method to predict the orientation of the fibers in the final molded piece because mechanical properties are dependent on fiber length and orientation. The properties and behavior of the flow of a fiber reinforced polymer composite during molding are directly related to the mechanical properties of the completed part. Flow affects the orientation of the fibers within the polymer matrix and at locations within the mold cavity. The ability to predict, and ultimately control, flow properties allows for the efficient design of safe parts for industrial uses, such as vehicle parts in the automotive industry.

The goal of this work is to test material characterization techniques developed for measuring and predicting the orientation of fiber reinforced injection molded thermoplastics using commercial grade long carbon fiber (LCF) reinforced nylon 6,6 (PA 6,6). Forty weight percent LCF/PA 6,6 with a weight averaged fiber length of 1.242 mm was injection molded into center gated disks and the orientation was measured experimentally. A Linux based Numlab flow simulation process that utilizes the finite element method to model the flow and orientation of fiber reinforced materials was tested and modified to accurately predict the orientation for this composite and geometry. Fiber orientation models used for prediction require the use of empirical parameters. A method of using non-lubricated squeeze flow as an efficient way to determine the strain reduction factor, , and Brownian motion like factor, CI, parameters for short glass fiber polypropylene orientation predictions using the strain reduction factor (SRF) model was extended to use with the LCF/PA 6,6 composite. The 40 weight percent LCF/PA 6,6 material was compression molded and underwent non-lubricated squeeze flow testing. The flow was simulated using finite element analysis to predict the fiber orientation using the SRF model. The empirical parameters were fit by comparing the simulated orientation to experimentally measured orientation. This is a successful method for predicting orientation parameters that is significantly more efficient than optimizing the parameters based on fitting orientation generated in injection molded pieces. The determined orientation parameters were then used to reasonably predict the fiber orientation for the injection molded parts. The authors proved that the experimental and simulation techniques developed for the glass fiber reinforced polypropylene material are valid for use with a different, more complex material.

Description
Keywords
Long Carbon Fiber, Fiber Aspect Ratio, Fiber Orientation, Squeeze Flow, Injection Molding
Citation