A Novel Decentralized Game-Theoretic Adaptive Traffic Signal Controller: Large-Scale Testing

dc.contributor.authorAbdelghaffar, Hossam M.en
dc.contributor.authorRakha, Hesham A.en
dc.contributor.departmentCivil and Environmental Engineeringen
dc.contributor.departmentVirginia Tech Transportation Instituteen
dc.date.accessioned2019-05-31T11:51:45Zen
dc.date.available2019-05-31T11:51:45Zen
dc.date.issued2019-05-17en
dc.date.updated2019-05-31T06:01:54Zen
dc.description.abstractThis paper presents a novel de-centralized flexible phasing scheme, cycle-free, adaptive traffic signal controller using a Nash bargaining game-theoretic framework. The Nash bargaining algorithm optimizes the traffic signal timings at each signalized intersection by modeling each phase as a player in a game, where players cooperate to reach a mutually agreeable outcome. The controller is implemented and tested in the INTEGRATION microscopic traffic assignment and simulation software, comparing its performance to that of a traditional decentralized adaptive cycle length and phase split traffic signal controller and a centralized fully-coordinated adaptive phase split, cycle length, and offset optimization controller. The comparisons are conducted in the town of Blacksburg, Virginia (38 traffic signalized intersections) and in downtown Los Angeles, California (457 signalized intersections). The results for the downtown Blacksburg evaluation show significant network-wide efficiency improvements. Specifically, there is a <inline-formula> <math display="inline"> <semantics> <mrow> <mn>23.6</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> reduction in travel time, a <inline-formula> <math display="inline"> <semantics> <mrow> <mn>37.6</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> reduction in queue lengths, and a <inline-formula> <math display="inline"> <semantics> <mrow> <mn>10.4</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> reduction in <inline-formula> <math display="inline"> <semantics> <msub> <mi>CO</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> emissions relative to traditional adaptive traffic signal controllers. In addition, the testing on the downtown Los Angeles network produces a <inline-formula> <math display="inline"> <semantics> <mrow> <mn>35.1</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> reduction in travel time on the intersection approaches, a <inline-formula> <math display="inline"> <semantics> <mrow> <mn>54.7</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> reduction in queue lengths, and a <inline-formula> <math display="inline"> <semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> reduction in <inline-formula> <math display="inline"> <semantics> <msub> <mi>CO</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> emissions compared to traditional adaptive traffic signal controllers. The results demonstrate significant potential benefits of using the proposed controller over other state-of-the-art centralized and de-centralized adaptive traffic signal controllers on large-scale networks both during uncongested and congested conditions.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationAbdelghaffar, H.M.; Rakha, H.A. A Novel Decentralized Game-Theoretic Adaptive Traffic Signal Controller: Large-Scale Testing. Sensors 2019, 19, 2282.en
dc.identifier.doihttps://doi.org/10.3390/s19102282en
dc.identifier.urihttp://hdl.handle.net/10919/89652en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjecttraffic signal controlen
dc.subjectgame theoryen
dc.subjectdecentralized controlen
dc.subjectlarge-scale network controlen
dc.titleA Novel Decentralized Game-Theoretic Adaptive Traffic Signal Controller: Large-Scale Testingen
dc.title.serialSensorsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-19-02282-v2.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: