VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Early Holocene Greenland-ice mass loss likely triggered earthquakes and tsunami

Abstract

Due to their large mass, ice sheets induce significant stresses in the Earth's crust. Stress release during deglaciation can trigger large-magnitude earthquakes, as indicated by surface faults in northern Europe. Although glacially-induced stresses have been analyzed in northern Europe, they have not yet been analyzed for Greenland. We know that the Greenland Ice Sheet experienced a large melting period in the early Holocene, and so here, we analyze glacially-induced stresses during deglaciation for Greenland for the first time. Instability occurs in southern Greenland, where we use a combined analysis of past sea level indicators and a model of glacially-induced fault reactivation to show that deglaciation of the Greenland Ice Sheet may have caused a large magnitude earthquake or a series of smaller magnitude earthquakes around 10,600 years ago offshore south-western Greenland. The earthquake(s) may have shifted relative sea level observations by several meters. If the earthquake-induced stress release was created during a single event, it could have produced a tsunami in the North Atlantic Ocean with runup heights of up to 7.2 m in the British Isles and up to 7.8 m along Canadian coasts. (C) 2020 The Authors. Published by Elsevier B.V.

Description

Keywords

glacial isostatic adjustment, relative sea-level data, tsunami, Greenland, glacially-triggered faulting

Citation