Abiotic Factors Affecting Vector-Borne Plant Pathogen Complexes: Elevated CO2 and the Barley Yellow Dwarf Pathosystem

TR Number

Date

2025-11-22

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Changes in atmospheric CO2 are known to influence plant physiology, subsequently affecting the nature of their interactions with their biotic environment. Barley yellow dwarf virus (BYDV), one of the most widespread and damaging viruses of small grains, is transmitted by cereal aphids and has a broad range of cultivated and uncultivated hosts from the Poaceae family. Here, we examined the effects of elevated CO2 on plant physiology, Rhopalosiphum padi L. performance, and the accumulation of BYDV (strain BYDV-PAV) in winter wheat (Triticum aestivum L.), foxtail barley (Hordeum jubatum L.), and green foxtail (Setaria viridis (L.) Beauv.). A growth chamber experiment was conducted under ambient (420 ppm) and elevated CO2 (700 ppm) with aphid-infested and uninfested plants. Elevated CO2 significantly increased total plant biomass in all species but did not affect aphid survival or reproduction. The root biomass of winter wheat and foxtail barley, but not green foxtail, increased under elevated CO2. However, no significant effect of aphids/BYDV was detected on total plant biomass. Transpiration rates varied with host plant and aphid presence but were not affected by CO2 level. Total water-soluble carbohydrate concentration was unaffected by CO2 or aphids. BYDV-PAV accumulation varied by host plant species, with winter wheat having the highest virus titer, followed by foxtail barley and green foxtail. Virus titers were increased under elevated CO2 in all host plant species. We demonstrated that uncultivated grasses are important reservoirs for both BYDV-PAV and the R. padi vector and suggested that elevated CO2 may enhance virus accumulation across the evaluated host plants. This underscores the need to consider the role of non-crop hosts in developing management plans and/or predicting BYDV dynamics in small grains.

Description

Keywords

Citation

Parizad, S.; Yang, J.; Oeller, L.; Nikoukar, A.; Liang, X.; Rashed, A. Abiotic Factors Affecting Vector-Borne Plant Pathogen Complexes: Elevated CO2 and the Barley Yellow Dwarf Pathosystem. Insects 2025, 16, 1186.