Seismic detection of a deep mantle discontinuity within Mars by InSight

dc.contributor.authorHuang, Quanchengen
dc.contributor.authorSchmerr, Nicholas C.en
dc.contributor.authorKing, Scott D.en
dc.contributor.authorKim, Doyeonen
dc.contributor.authorRivoldini, Attilioen
dc.contributor.authorPlesa, Ana-Catalinaen
dc.contributor.authorSamuel, Henrien
dc.contributor.authorMaguire, Ross R.en
dc.contributor.authorKarakostas, Foivosen
dc.contributor.authorLekić, Vedranen
dc.contributor.authorCharalambous, Constantinosen
dc.contributor.authorCollinet, Maxen
dc.contributor.authorMyhill, Roberten
dc.contributor.authorAntonangeli, Danieleen
dc.contributor.authorDrilleau, Melanieen
dc.contributor.authorBystricky, Mishaen
dc.contributor.authorBollinger, Carolineen
dc.contributor.authorMichaut, Chloeen
dc.contributor.authorGudkova, Tamaraen
dc.contributor.authorIrving, Jessica C. E.en
dc.contributor.authorHorleston, Annaen
dc.contributor.authorFernando, Benjaminen
dc.contributor.authorLeng, Kuangdaien
dc.contributor.authorNissen-Meyer, Tarjeen
dc.contributor.authorBejina, Fredericen
dc.contributor.authorBozdag, Ebruen
dc.contributor.authorBeghein, Carolineen
dc.contributor.authorWaszek, Laurenen
dc.contributor.authorSiersch, Nicki C.en
dc.contributor.authorScholz, John-Roberten
dc.contributor.authorDavis, Paul M.en
dc.contributor.authorLognonné, Philippeen
dc.contributor.authorPinot, Baptisteen
dc.contributor.authorWidmer-Schnidrig, Rudolfen
dc.contributor.authorPanning, Mark P.en
dc.contributor.authorSmrekar, Suzanne E.en
dc.contributor.authorSpohn, Tilmanen
dc.contributor.authorPike, William T.en
dc.contributor.authorGiardini, Domenicoen
dc.contributor.authorBanerdt, W. Bruceen
dc.date.accessioned2023-01-04T14:35:57Zen
dc.date.available2023-01-04T14:35:57Zen
dc.date.issued2022-10-18en
dc.date.updated2022-12-30T14:42:30Zen
dc.description.abstractConstraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars’ deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA’s InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 ± 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 ± 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m2en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1073/pnas.2204474119en
dc.identifier.eissn1091-6490en
dc.identifier.issn0027-8424en
dc.identifier.issue42en
dc.identifier.orcidKing, Scott [0000-0002-9564-5164]en
dc.identifier.pmid36215469en
dc.identifier.urihttp://hdl.handle.net/10919/113019en
dc.identifier.volume119en
dc.language.isoenen
dc.publisherProceedings of the National Academy of Sciencesen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/36215469en
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectinterior of Marsen
dc.subjectmantle transition zoneen
dc.subjectthermal evolution of Marsen
dc.subject.meshIronen
dc.subject.meshMineralsen
dc.subject.meshExtraterrestrial Environmenten
dc.subject.meshMarsen
dc.subject.meshEarth, Planeten
dc.titleSeismic detection of a deep mantle discontinuity within Mars by InSighten
dc.title.serialProceedings of the National Academy of Sciences of the United States of Americaen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherJournal Articleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Geosciencesen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HuangSeismic2022.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description:
Published version