Measurement of Local Differential Privacy Techniques for IoT-based Streaming Data
dc.contributor.author | Afrose, Sharmin | en |
dc.contributor.author | Yao, Danfeng (Daphne) | en |
dc.contributor.author | Kotevska, Olivera | en |
dc.date.accessioned | 2022-03-03T15:10:15Z | en |
dc.date.available | 2022-03-03T15:10:15Z | en |
dc.date.issued | 2021-01-01 | en |
dc.date.updated | 2022-03-03T15:10:03Z | en |
dc.description.abstract | Various Internet of Things (IoT) devices generate complex, dynamically changed, and infinite data streams. Adversaries can cause harm if they can access the user's sensitive raw streaming data. For this reason, protecting the privacy of the data streams is crucial. In this paper, we explore local differential privacy techniques for streaming data. We compare the techniques and report the advantages and limitations. We also present the effect on component (e.g., smoother, perturber) variations of distribution-based local differential privacy. We find that combining distribution-based noise during perturbation provides more flexibility to the interested entity. | en |
dc.description.version | Published version | en |
dc.format.extent | Pages 1-10 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/PST52912.2021.9647839 | en |
dc.identifier.isbn | 9781665401845 | en |
dc.identifier.orcid | Yao, Danfeng [0000-0001-8969-2792] | en |
dc.identifier.uri | http://hdl.handle.net/10919/109016 | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | Public Domain | en |
dc.rights.uri | http://creativecommons.org/publicdomain/mark/1.0/ | en |
dc.title | Measurement of Local Differential Privacy Techniques for IoT-based Streaming Data | en |
dc.title.serial | 2021 18th International Conference on Privacy, Security and Trust, PST 2021 | en |
dc.type | Conference proceeding | en |
dc.type.dcmitype | Text | en |
dc.type.dcmitype | Text | en |
dc.type.other | Conference Proceeding | en |
pubs.finish-date | 2021-12-15 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Computer Science | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.start-date | 2021-12-13 | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PST2021_IEEE_Xplore_compliant.pdf
- Size:
- 2.3 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version