A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currents.
dc.contributor.author | Rigby, J. R. | en |
dc.contributor.author | Poelzing, Steven | en |
dc.contributor.department | Biomedical Engineering and Mechanics | en |
dc.contributor.department | Fralin Biomedical Research Institute | en |
dc.contributor.department | School of Biomedical Engineering and Sciences | en |
dc.date.accessioned | 2017-02-03T15:13:58Z | en |
dc.date.available | 2017-02-03T15:13:58Z | en |
dc.date.issued | 2012-04 | en |
dc.description.abstract | Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, K(ir)2.1, and the channel encoding the cardiac fast sodium current, Na(v)1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses. | en |
dc.description.version | Published version | en |
dc.format.extent | 946 - 954 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1007/s10439-011-0460-9 | en |
dc.identifier.eissn | 1573-9686 | en |
dc.identifier.issue | 4 | en |
dc.identifier.uri | http://hdl.handle.net/10919/74922 | en |
dc.identifier.volume | 40 | en |
dc.language.iso | en | en |
dc.relation.uri | http://www.ncbi.nlm.nih.gov/pubmed/22052157 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Dielectric Spectroscopy | en |
dc.subject | HEK293 Cells | en |
dc.subject | Humans | en |
dc.subject | Ion Transport | en |
dc.subject | Membrane Potentials | en |
dc.subject | NAV1.5 Voltage-Gated Sodium Channel | en |
dc.subject | Potassium Channels, Inwardly Rectifying | en |
dc.subject | Sodium Channels | en |
dc.title | A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currents. | en |
dc.title.serial | Annals of Biomedical Engineering | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Research Support, N.I.H., Extramural | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Virginia Tech Carilion Research Institute | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currents.pdf
- Size:
- 635.45 KB
- Format:
- Adobe Portable Document Format
- Description:
- Publisher's Version
License bundle
1 - 1 of 1
- Name:
- VTUL_Distribution_License_2016_05_09.pdf
- Size:
- 18.09 KB
- Format:
- Adobe Portable Document Format
- Description: