Convergent methods for calculating thermodynamic Green functions
dc.contributor | Virginia Tech | en |
dc.contributor.author | Bowen, Samuel P. | en |
dc.contributor.author | Williams, Clayton D. | en |
dc.contributor.author | Mancini, Jay D. | en |
dc.contributor.department | Physics | en |
dc.date.accessed | 2014-04-22 | en |
dc.date.accessioned | 2014-04-25T14:12:37Z | en |
dc.date.available | 2014-04-25T14:12:37Z | en |
dc.date.issued | 1984-08 | en |
dc.description.abstract | A convergent method of approximating thermodynamic Green functions is outlined briefly. The method constructs a sequence of approximants which converges independently of the strength of the Hamiltonian's coupling constants. Two new concepts associated with the approximants are introduced: the resolving power of the approximation, and conditional creation (annihilation) operators. These ideas are illustrated on an exactly soluble model and a numerical example. A convergent expression for the scattering rate in a field theory is also derived. | en |
dc.description.sponsorship | NSF DMR-81-06223 | en |
dc.identifier.citation | Bowen, S. P.;Williams, C. D.; Mancini, J. D., "Convergent methods for calculating thermodynamic Green functions," Phys. Rev. A 30, 932 (1984); DOI: http://dx.doi.org/10.1103/PhysRevA.30.932 | en |
dc.identifier.doi | https://doi.org/10.1103/PhysRevA.30.932 | en |
dc.identifier.issn | 1050-2947 | en |
dc.identifier.uri | http://hdl.handle.net/10919/47698 | en |
dc.identifier.url | http://journals.aps.org/pra/abstract/10.1103/PhysRevA.30.932 | en |
dc.language.iso | en_US | en |
dc.publisher | American Physical Society | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | Convergent methods for calculating thermodynamic Green functions | en |
dc.title.serial | Physical Review A | en |
dc.type | Article - Refereed | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PhysRevA.30.932.pdf
- Size:
- 336.81 KB
- Format:
- Adobe Portable Document Format
- Description:
- Main article