Extracting the Wisdom of Crowds From Crowdsourcing Platforms

Files
TR Number
Date
2019-08-02
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Enabled by the wave of online crowdsourcing activities, extracting the Wisdom of Crowds (WoC) has become an emerging research area, one that is used to aggregate judgments, opinions, or predictions from a large group of individuals for improved decision making. However, existing literature mostly focuses on eliciting the wisdom of crowds in an offline context—without tapping into the vast amount of data available on online crowdsourcing platforms. To extract WoC from participants on online platforms, there exist at least three challenges, including social influence, suboptimal aggregation strategies, and data sparsity. This dissertation aims to answer the research question of how to effectively extract WoC from crowdsourcing platforms for the purpose of making better decisions. In the first study, I designed a new opinions aggregation method, Social Crowd IQ (SCIQ), using a time-based decay function to eliminate the impact of social influence on crowd performance. In the second study, I proposed a statistical learning method, CrowdBoosting, instead of a heuristic-based method, to improve the quality of crowd wisdom. In the third study, I designed a new method, Collective Persuasibility, to solve the challenge of data sparsity in a crowdfunding platform by inferring the backers' preferences and persuasibility. My work shows that people can obtain business benefits from crowd wisdom, and it provides several effective methods to extract wisdom from online crowdsourcing platforms, such as StockTwits, Good Judgment Open, and Kickstarter.

Description
Keywords
crowdsourcing, the wisdom of crowds, statistical learning, opinion aggregation, crowdfunding
Citation