Performance Evaluation of Numerical Weather Prediction Models in Forecasting Rainfall Events in Kerala, India
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Heavy rainfall events are the main cause of flooding, especially in regions like Kerala, India. Kerala is vulnerable to extreme weather due to its geographical location in the Western Ghats. Accurate forecasting of rainfall events is essential for minimizing the impact of floods on life, infrastructure, and agriculture. For accurate forecasting of heavy rainfall events in this region, region-specific evaluations of NWP model performance are very important. This study evaluated the performance of six Numerical Weather Prediction (NWP) models—NCEP, NCMRWF, ECMWF, CMA, UKMO, and JMA—in forecasting heavy rainfall events in Kerala. A comprehensive assessment of these models was performed using traditional performance metrics, categorical precipitation metrics, and Fractional Skill Scores (FSSs) across different forecast lead times. FSSs were calculated for different rainfall thresholds (100 mm, 50 mm, 5 mm). The results reveal that all models captured rainfall patterns well for the lower threshold of 5 mm, but most of the models struggled to accurately forecast heavy rainfall, especially for longer lead times. JMA performed well overall in most of the metrics except False Alarm Ratio (FAR). It showed high FAR, which revealed that it may predict false rainfall events. ECMWF demonstrated consistent performance. NCEP and UKMO performed moderately well. CMA, and NCMRWF had the lowest accuracy either due to more errors or biases. The findings underscore the trade-offs in model performance, suggesting that model selection should depend on the accuracy required or rainfall event prediction capability. This study recommends the use of Multi-Model Ensembles (MME) to improve forecasting accuracy, integrate the strengths of the best-performing models, and reduce biases. Future research can also focus on expanding observational networks and employing advanced data assimilation techniques for more reliable predictions, particularly in regions with complex terrain such as Kerala.