Ecotypic Variation in Johnsongrass in Its Invaded U.S. Range
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Biological invasions have been observed throughout the world for centuries, often with major consequences to biodiversity and food security. Tying invasion to species identity and associated traits has led to numerous hypotheses on why, and where, some species are invasive. In recent decades, attention to intraspecific variation among invaders has produced questions about their adaptation to climate, land use, and environmental change. I examined the intraspecific variation of invasive Johnsongrass's (Sorghum halepense (L.) Pers.) seedling stress response, propagule cold tolerance, and large-scale niche dynamics for correlation with populations' climatic and ecotypic (i.e., agricultural vs. non-agricultural) origin. Overall, I found a greater number of home climate effects than ecotypic effects on various traits. Non-agricultural seed from cold climates and agricultural seed from warm climates germinated more and faster, while non-agricultural seedlings showed uniform chlorophyll production regardless of home soil carbon origin, unlike their agricultural counterparts. Neither seedling stress response nor propagule cold tolerance interacted with ecotype identity; however, drought stress varied with population origins' aridity and soil fertility, and seed from warm/humid and cold/dry climates was most germinable. Comparison of seed and rhizome cold tolerance also suggested that the latter is a conserved trait that may be limiting S. halepense poleward range expansion. This physiological limit, an unchanged cold temperature niche boundary between continents and ecotypes, and a narrowed niche following transition to non-agricultural lands all imply low likelihood of spread based on climatic niche shift. Instead, evidence points to range expansion driven primarily by climate change and highlights agriculture's role in facilitating invasibility. This tandem approach to climate and land use as drivers of intraspecific variation is transferable to other taxa and can help refine our conception of and response to invasion in the Anthropocene.