Robot Motions that Mitigate Uncertainty

TR Number

Date

2024-10-23

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This dissertation addresses the challenge of robot decision making in the presence of uncertainty, specifically focusing on robot motion decisions in the context of deep learning-based perception uncertainty. The first part of this dissertation introduces a risk-aware framework for path planning and assignment of multiple robots and multiple demands in unknown environments. The second part introduces a risk-aware motion model for searching for a target object in an unknown environment. To illustrate practical application, consider a situation such as disaster response or search-and-rescue, where it is imperative for ground vehicles to swiftly reach critical locations. Afterward, an agent deployed at a specified location must navigate inside a building to find a target, whether it is an object or a person. In the first problem, the terrain information is only available as an aerial georeferenced image frame. Semantic segmentation of the aerial images is performed using Bayesian deep learning techniques, creating a cost map for the safe navigation ground robots. The proposed framework also accounts for risk at a further level, using conditional value at risk (CVaR), for making risk-aware assignments between the source and goal. When the robot reaches its destination, the second problem addresses the object search task using a proposed machine learning-based intelligent motion model. A comparison of various motion models, including a simple greedy baseline, indicates that the proposed model yields more risk-aware and robust results. All in all, considering uncertainty in both systems leads to demonstrably safer decisions.

Description

Keywords

Uncertainty, Robot Motion, Deep Learning

Citation