VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

The property B(P,[alpha])-refinability and its relationship to generalized paracompact topological spaces

TR Number

Date

1987

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Polytechnic Institute and State University

Abstract

The property B(P,∝)-refinability is studied and is used to obtain new covering characterizations of paracompactness, collectionwise normality, subparacompactness, d-paracompactness, a-normality, mesocompactness, and related concepts. These new characterizations both generalize and unify many well-known results.

The property B(P,∝)-refinability is strictly weaker than the property Θ-refinability. A B(P,∝)-refinement is a generalization of a σ-locally finite-closed refinement. Here ∝ is a fixed ordinal which dictates the number of "levels" in a given refinement, and P represents a property such as discreteness or local finiteness which each "level" must satisfy relative to a certain subspace.

Description

Keywords

Citation