The property B(P,[alpha])-refinability and its relationship to generalized paracompact topological spaces
Files
TR Number
Date
1987
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Polytechnic Institute and State University
Abstract
The property B(P,∝)-refinability is studied and is used to obtain new covering characterizations of paracompactness, collectionwise normality, subparacompactness, d-paracompactness, a-normality, mesocompactness, and related concepts. These new characterizations both generalize and unify many well-known results.
The property B(P,∝)-refinability is strictly weaker than the property Θ-refinability. A B(P,∝)-refinement is a generalization of a σ-locally finite-closed refinement. Here ∝ is a fixed ordinal which dictates the number of "levels" in a given refinement, and P represents a property such as discreteness or local finiteness which each "level" must satisfy relative to a certain subspace.