Spectroscopic Studies and Reaction Mechanisms of Small Molecule Oxidation over Metal Oxide-Supported Catalysts

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Chemical warfare agents are a toxic class of compounds that are incredibly harmful to human health. Methods of detoxification and decontamination currently exist, however they all suffer from problems that involve logistical transport or involve technologies that directly address liquid threats instead of vapors. One promising method of detoxification involves the oxidation of these compounds into less-harmful species. The relatively large chemical size and complexity of modern-day chemical warfare agents, however, precludes a straightforward analysis of the chemical transformations that take place on novel decontaminating materials. Additionally, a fundamental understanding of reaction mechanisms that occur on novel material surfaces is required before improved materials can be developed. To this end, the oxidation of three simpler, smaller organic molecules were studied over a variety of materials in order to build up a chemical understanding of the systems under study. The photoepoxidation of propene into propene oxide was observed to readily occur over an in-house developed dual titania-silica catalyst created by atomic layer deposition. The subsequent photoinduced degradation of produced propene oxide was observed to occur over the novel catalyst. Next, the oxidation of CO was studied over a Pt/TiO2 catalyst while in the presence of humidity. The addition of water was shown to enable an alternative, low energy pathway that closely followed the water gas shift, but ended upon the production of stable surface-bound formates. Gaseous oxygen was found to subsequently oxidize these surface formates into the full oxidation product, CO2. Next, the oxidation of methanol was studied over the same Pt/TiO2 catalyst. It was discovered that the water produced when methanol initially adsorbs to the catalyst surface is responsible for unlocking the oxidative capacity of the material. Finally, a custom packedbed reactor was designed and built that enabled unique experimental capabilities not yet available in commercial systems, and will be used in the future to directly test the oxidative capabilities of novel materials for chemical warfare agent destruction.

surface chemistry, infrared spectroscopy, heterogenous catalysis, propene epoxidation, methanol oxidation, CO oxidation, packed-bed reactor, chemical warfare agent neutralization