A Study of Inhomogeneities and Anisotrophies In Superconductors via Ginzburg-Landau Type models

dc.contributor.authorDeang, Jennifer M.en
dc.contributor.committeechairGunzburger, Max D.en
dc.contributor.committeememberBurns, John A.en
dc.contributor.committeememberCliff, Eugene M.en
dc.contributor.committeememberHerdman, Terry L.en
dc.contributor.committeememberPeterson, Janet S.en
dc.contributor.departmentMathematicsen
dc.date.accessioned2014-03-14T20:21:24Zen
dc.date.adate1997-03-14en
dc.date.available2014-03-14T20:21:24Zen
dc.date.issued1997-03-14en
dc.date.rdate1997-03-14en
dc.date.sdate1998-07-13en
dc.description.abstractSuperconductivity continues to be of great theoretical and practical interest and remains a challenging area of scientific inquiry. Most superconductors of practical utility are of type-II, i.e., they allow the penetration of magnetic fields in the form of tubes of flux that are referred to as "vortices." Motion of these vortices due to, e.g., applied currents, induce a loss of perfect conductivity. Knowing how vortices move and arrange themselves in lattice structures, how their movement is suppressed by pinning mechanisms, and how their movement is affected by thermal fluctuations is critical to understanding how to maintain resistanceless current flow. We study a variety of Ginzburg-Landau type models for superconductivity that can account for inhomogeneous and isotropy materials, grain boundaries, and thermal fluctuations. We develop robust, accurate, and efficient numerical codes and apply them to numerous studies of how vortex motions are affected by the various mechanisms mentioned above. We also examine some analytical aspects of type-II superconductors under the influence of thermal fluctuations.en
dc.description.degreePh. D.en
dc.format.extentxix, 180 leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-1913943975930en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-1913943975930/en
dc.identifier.urihttp://hdl.handle.net/10919/30326en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartetd.pdfen
dc.relation.isformatofOCLC# 38725972en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectnumerical analysisen
dc.subjectsuperconductivityen
dc.subject.lccLD5655.V856 1997.D436en
dc.titleA Study of Inhomogeneities and Anisotrophies In Superconductors via Ginzburg-Landau Type modelsen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
etd.pdf
Size:
11.1 MB
Format:
Adobe Portable Document Format