Box-Jenkins Model of Elastic Drive System Using Levenberg-Marquardt Algorithm

dc.contributor.authorJafari, Rezaen
dc.date.accessioned2025-02-05T13:21:39Zen
dc.date.available2025-02-05T13:21:39Zen
dc.date.issued2024-03-21en
dc.description.abstractThis paper explains the derivation of Box-Jenkins model for the elastic drive system using Levenberg-Marduardt algorithm. The Box-Jenkins model which is the most flexible linear model has been chosen to identify the elastic drive system. The GPAC analysis has been used for the preliminary identification and the Maximum Likelihood Estimator (Levenberg-Marduardt) is used for the parameter estimations. Several models have been developed for the elastic drive system and the simplest model has been chosen. The accuracy of the final model, residual analysis, has been checked using CHI-Square test.en
dc.description.versionAccepted versionen
dc.format.extentPages 467-494en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1007/978-3-031-53960-2_30en
dc.identifier.eissn2367-3389en
dc.identifier.isbn9783031539596en
dc.identifier.issn2367-3370en
dc.identifier.orcidJafari, Reza [0000-0002-4520-9305]en
dc.identifier.urihttps://hdl.handle.net/10919/124500en
dc.identifier.volume919 LNNSen
dc.language.isoenen
dc.publisherSpringer Natureen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleBox-Jenkins Model of Elastic Drive System Using Levenberg-Marquardt Algorithmen
dc.title.serialLecture Notes in Networks and Systemsen
dc.typeConference proceedingen
dc.type.dcmitypeTexten
dc.type.otherConference Proceedingen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Innovation Campusen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FICC2024_revised_02.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: