POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation

dc.contributor.authorStefanescu, Razvanen
dc.contributor.authorSandu, Adrianen
dc.contributor.authorNavon, I. M.en
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2017-03-06T18:35:26Zen
dc.date.available2017-03-06T18:35:26Zen
dc.date.issued2015-08-15en
dc.description.abstractThis work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush-Kuhn-Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for Proper Orthogonal Decomposition (POD) ROM data assimilation using both Galerkin and Petrov-Galerkin projections. For the first time POD, tensorial POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov-Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.en
dc.description.versionPublished versionen
dc.format.extent569 - 595 (27) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1016/j.jcp.2015.04.030en
dc.identifier.issn0021-9991en
dc.identifier.urihttp://hdl.handle.net/10919/75269en
dc.identifier.volume295en
dc.language.isoenen
dc.publisherAcademic Press – Elsevieren
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000354399700027&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectTechnologyen
dc.subjectComputer Science, Interdisciplinary Applicationsen
dc.subjectPhysics, Mathematicalen
dc.subjectComputer Scienceen
dc.subjectPhysicsen
dc.subjectInverse problemsen
dc.subjectProper orthogonal decompositionen
dc.subjectDiscrete empirical interpolation method (DEIM)en
dc.subjectReduced-order models (ROMs)en
dc.subjectShallow water equationsen
dc.subjectFinite difference methodsen
dc.subjectPROPER-ORTHOGONAL-DECOMPOSITIONen
dc.subjectSHALLOW-WATER EQUATIONSen
dc.subjectPARTIAL-DIFFERENTIAL-EQUATIONSen
dc.subjectNONLINEAR MODEL-REDUCTIONen
dc.subjectPOSTERIORI ERROR ESTIMATIONen
dc.subjectCYLINDER WAKEen
dc.subjectEMPIRICAL INTERPOLATIONen
dc.subjectSENSITIVITY-ANALYSISen
dc.subjectBURGERS-EQUATIONen
dc.subjectFEEDBACK-CONTROLen
dc.titlePOD/DEIM reduced-order strategies for efficient four dimensional variational data assimilationen
dc.title.serialJournal of Computational Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/Computer Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1402.5992v3.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
Submitted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: