Sensitivity of Microphysical Schemes on the Simulation of Post-Monsoon Tropical Cyclones over the North Indian Ocean

TR Number

Date

2020-11-30

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Tropical Cyclones (TCs) are the most disastrous natural weather phenomenon, that have a significant impact on the socioeconomic development of the country. In the past two decades, Numerical Weather Prediction (NWP) models (e.g., Advanced Research WRF (ARW)) have been used for the prediction of TCs. Extensive studies were carried out on the prediction of TCs using the ARW model. However, these studies are limited to a single cyclone with varying physics schemes, or single physics schemes to more than one cyclone. Hence, there is a need to compare different physics schemes on multiple TCs to understand their effectiveness. In the present study, a total of 56 sensitivity experiments are conducted to investigate the impact of seven microphysical parameterization schemes on eight post-monsoon TCs formed over the North Indian Ocean (NIO) using the ARW model. The performance of the Ferrier, Lin, Morrison, Thompson, WSM3, WSM5, and WSM6 are evaluated using error metrics, namely Mean Absolute Error (MAE), Mean Square Error (MSE), Skill Score (SS), and average track error. The results are compared with Indian Meteorological Department (IMD) observations. From the sensitivity experiments, it is observed that the WSM3 scheme simulated the cyclones Nilofar, Kyant, Daye, and Phethai well, whereas the cyclones Hudhud, Titli, and Ockhi are best simulated by WSM6. The present study suggests that the WSM3 scheme can be used as the first best scheme for the prediction of post-monsoon tropical cyclones over the NIO.

Description

Keywords

ARW model, microphysical schemes, North Indian Ocean, tropical cyclones, average track error, skill score, WSM3

Citation

Venkata Rao, G.; Venkata Reddy, K.; Sridhar, V. Sensitivity of Microphysical Schemes on the Simulation of Post-Monsoon Tropical Cyclones over the North Indian Ocean. Atmosphere 2020, 11, 1297.