Synchronization between Attractors: Genomic Mechanism of Cell-Fate Change

dc.contributor.authorTsuchiya, Masaen
dc.contributor.authorBrazhnik, Paulen
dc.contributor.authorBizzarri, Marianoen
dc.contributor.authorGiuliani, Alessandroen
dc.date.accessioned2023-07-28T14:48:28Zen
dc.date.available2023-07-28T14:48:28Zen
dc.date.issued2023-07-18en
dc.date.updated2023-07-28T12:22:02Zen
dc.description.abstractHerein, we provide a brief overview of complex systems theory approaches to investigate the genomic mechanism of cell-fate changes. Cell trajectories across the epigenetic landscape, whether in development, environmental responses, or disease progression, are controlled by extensively coordinated genome-wide gene expression changes. The elucidation of the mechanisms underlying these coherent expression changes is of fundamental importance in cell biology and for paving the road to new therapeutic approaches. In previous studies, we pointed at dynamic criticality as a plausible characteristic of genome-wide transition dynamics guiding cell fate. Whole-genome expression develops an engine-like organization (genome engine) in order to establish an autonomous dynamical system, capable of both homeostasis and transition behaviors. A critical set of genes behaves as a critical point (CP) that serves as the organizing center of cell-fate change. When the system is pushed away from homeostasis, the state change that occurs at the CP makes local perturbation spread over the genome, demonstrating self-organized critical (SOC) control of genome expression. Oscillating-Mode genes (which normally keep genome expression on pace with microenvironment fluctuations), when in the presence of an effective perturbative stimulus, drive the dynamics of synchronization, and thus guide the cell-fate transition.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationTsuchiya, M.; Brazhnik, P.; Bizzarri, M.; Giuliani, A. Synchronization between Attractors: Genomic Mechanism of Cell-Fate Change. Int. J. Mol. Sci. 2023, 24, 11603.en
dc.identifier.doihttps://doi.org/10.3390/ijms241411603en
dc.identifier.urihttp://hdl.handle.net/10919/115927en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectgenome expressionen
dc.subjectcell-fate decisionen
dc.subjectreversion of canceren
dc.subjectself-organized criticality (SOC)en
dc.subjectcritical pointen
dc.subjectgenome engineen
dc.subjectgenome attractoren
dc.subjectbiological regulationen
dc.subjecttransition theoryen
dc.titleSynchronization between Attractors: Genomic Mechanism of Cell-Fate Changeen
dc.title.serialInternational Journal of Molecular Scienceen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ijms-24-11603-v2.pdf
Size:
4.12 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: