VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete Phytophthora cactorum

dc.contributor.authorZhou, Xueen
dc.contributor.authorWen, Keen
dc.contributor.authorHuang, Shen-Xinen
dc.contributor.authorLu, Yien
dc.contributor.authorLiu, Yangen
dc.contributor.authorJin, Jing-Haoen
dc.contributor.authorKale, Shiv D.en
dc.contributor.authorChen, Xiao-Renen
dc.date.accessioned2023-02-24T15:47:21Zen
dc.date.available2023-02-24T15:47:21Zen
dc.date.issued2023-02-15en
dc.date.updated2023-02-24T14:07:57Zen
dc.description.abstractBlight caused by <i>Phytophthora</i> pathogens has a devastating impact on crop production. <i>Phytophthora</i> species secrete an array of effectors, such as <i>Phytophthora cactorum</i>-<i>Fragaria</i> (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i>Phytophthora cactorum</i>. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationZhou, X.; Wen, K.; Huang, S.-X.; Lu, Y.; Liu, Y.; Jin, J.-H.; Kale, S.D.; Chen, X.-R. Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete Phytophthora cactorum. Plants 2023, 12, 883.en
dc.identifier.doihttps://doi.org/10.3390/plants12040883en
dc.identifier.urihttp://hdl.handle.net/10919/113941en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjecttomatoen
dc.subjecttranscriptomeen
dc.subjectPhytophthora cactorumen
dc.subjectsmall cysteine-rich proteinen
dc.subjectphytotoxicityen
dc.subjectdefense responseen
dc.titleTime-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete Phytophthora cactorumen
dc.title.serialPlantsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
plants-12-00883-v3.pdf
Size:
5.99 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: