AI Based Improvement of Prognostic Health Management System

dc.contributor.authorHa, Sooken
dc.contributor.authorRanjan, Pranjalen
dc.date.accessioned2025-02-27T19:33:17Zen
dc.date.available2025-02-27T19:33:17Zen
dc.date.issued2024-11-06en
dc.description.abstractRooted in its commitment to maintain system health and optimize performance, PHM has journeyed through various evolutions. The most transformative among these is the transition from traditional methodologies to AI-infused strategies. This presentation is a comprehensive exploration of this transition, dissecting its nuances and implications in the broader context of machinery and prognostic health management (PHM) system.en
dc.format.mimetypeapplication/pdfen
dc.identifier.orcidShin, Sook [0000-0001-8511-9198]en
dc.identifier.urihttps://hdl.handle.net/10919/124737en
dc.language.isoenen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleAI Based Improvement of Prognostic Health Management Systemen
dc.typeReporten
dc.type.dcmitypeTexten
dc.type.otherOral Presentationen
dc.type.otherSeminaren
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Electrical and Computer Engineeringen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Report_AI-Based PHM_NEMOSYS_2023-2024.pdf
Size:
775.89 KB
Format:
Adobe Portable Document Format
Description:
Submitted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: