Characterization and modeling of silicon and silicon carbide power devices

dc.contributor.authorYang, Nanyingen
dc.contributor.committeechairMeehan, Kathleenen
dc.contributor.committeememberHefner, Allenen
dc.contributor.committeememberLai, Jih-Shengen
dc.contributor.committeememberLu, Guo-Quanen
dc.contributor.committeememberCenteno, Virgilio A.en
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2014-03-14T20:18:41Zen
dc.date.adate2010-12-08en
dc.date.available2014-03-14T20:18:41Zen
dc.date.issued2010-11-05en
dc.date.rdate2010-12-08en
dc.date.sdate2010-11-17en
dc.description.abstractPower devices play key roles in the power electronics applications. In order for the power electronics designers to fully utilize the performance advantages of power devices, compact power device models are needed in the circuit simulator (Saber, P-spice, etc.). Therefore, it is very important to get accurate device models. However, there are many challenges due to the development of new power devices with new internal structure and new semiconductor materials (SiC, GaN, etc.). In this dissertation, enhanced power diode model is presented with an improvement in the reverse blocking region. In the current power diode model in the Saber circuit simulator, an empirical approach was used to describe the low-bias reverse blocking region by introducing an effect called "conduction loss," a parameter that causes a linear relationship between the device voltage and current at low bias voltages with no physics meaning. Furthermore, this term is not sufficient to accurately describe the changes to the device characteristics as the junction temperature is varied. In the enhanced model, an analytical temperature dependent model for the reverse blocking characteristics has been developed for Schottky/JBS diodes by including the thermionic-emission mechanism in the low-bias range. The newly derived model equations have been implemented in Saber circuit simulator using MAST language. An automated parameter extraction software package developed for constructing silicon (Si) and silicon carbide (SiC) power diode models, which is called DIode Model Parameter extrACtion Tools (DIMPACT). This software tool extracts the data necessary to establish a library of power diode component models and provides a method for quantitatively comparing between different types of devices and establishing performance metrics for device development. This dissertation also presents a new Saber-compatible approach for modeling the inter-electrode capacitances of the Si CoolMOSTM transistor. This new approach accurately describes all three inter-electrode capacitances (i.e., gate-drain, gate-source, and drain-source capacitances) for the full operating range of the device. The model is derived using the actual charge distribution within the device rather than assuming a lumped charge or one-dimensional charge distribution. The comparison between the simulated data with the measured results validates the accuracy of the new physical model.en
dc.description.degreePh. D.en
dc.identifier.otheretd-11172010-152300en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-11172010-152300/en
dc.identifier.urihttp://hdl.handle.net/10919/29643en
dc.publisherVirginia Techen
dc.relation.haspartYang_N_D_2010.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectpower diodesen
dc.subjectSiC devicesen
dc.subjectdevice modelingen
dc.subjectparameter extractionen
dc.subjectCoolMOSen
dc.titleCharacterization and modeling of silicon and silicon carbide power devicesen
dc.typeDissertationen
thesis.degree.disciplineElectrical and Computer Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yang_N_D_2010.pdf
Size:
4.83 MB
Format:
Adobe Portable Document Format