Genome-wide identification of significant aberrations in cancer genome

dc.contributor.authorYuan, Xiguoen
dc.contributor.authorYu, Guoqiangen
dc.contributor.authorHou, Xuchuen
dc.contributor.authorShih, Ie-Mingen
dc.contributor.authorClarke, Roberten
dc.contributor.authorZhang, Junyingen
dc.contributor.authorHoffman, Eric P.en
dc.contributor.authorWang, Roger R.en
dc.contributor.authorZhang, Zhenen
dc.contributor.authorWang, Yueen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2012-08-29T07:53:32Zen
dc.date.available2012-08-29T07:53:32Zen
dc.date.issued2012-07-27en
dc.date.updated2012-08-29T07:53:32Zen
dc.description.abstractBackground Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is implemented using C++, together with R scripts for data formatting and Perl scripts for user interfacing, and it is easy to install and efficient to use. The source code and documentation are freely available at http://www.cbil.ece.vt.edu/software.htm.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBMC Genomics. 2012 Jul 27;13(1):342en
dc.identifier.doihttps://doi.org/10.1186/1471-2164-13-342en
dc.identifier.urihttp://hdl.handle.net/10919/18991en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderXiguo Yuan et al.; licensee BioMed Central Ltd.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleGenome-wide identification of significant aberrations in cancer genomeen
dc.title.serialBMC Genomicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 5 of 7
Name:
1471-2164-13-342.xml
Size:
124.5 KB
Format:
Extensible Markup Language
Loading...
Thumbnail Image
Name:
1471-2164-13-342.pdf
Size:
1.9 MB
Format:
Adobe Portable Document Format
Name:
1471-2164-13-342-S4.DOC
Size:
281.5 KB
Format:
Microsoft Word
Name:
1471-2164-13-342-S3.DOC
Size:
402 KB
Format:
Microsoft Word
Name:
1471-2164-13-342-S1.DOC
Size:
316 KB
Format:
Microsoft Word
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: