Journal Articles, BioMed Central and SpringerOpen

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 20 of 750
  • Assessing the impact of COVID-19 on outpatient psychiatric population well-being and symptomology utilizing COVID-19 Events Checklist (CEC) and Measurement Based Care
    Jones, Sydney B.; Ko, Hayoung; Gatto, Alyssa J.; Kablinger, Anita S.; Sharp, Hunter D.; Cooper, Lee D.; Tenzer, Martha M.; O’Brien, Virginia C.; McNamara, Robert S. (2024-11-21)
    Background: This study examines the impact of SARS-CoV-2 (i.e., coronavirus, COVID, COVID-19) using data from a measurement-based care (MBC) system utilized in an outpatient psychiatric clinic providing telemedicine care. A novel Patient Rated Outcome Measure (PROM), the COVID-19 Events Checklist (CEC) was administered in a hospital system based ambulatory clinic beginning April 2020 to track COVID-19-19’s impact on patients’ mental, emotional, and health-related behaviors during the pandemic. The study (1) provides descriptive CEC data, and (2) compares CEC results with PROMs evaluating anxiety (Generalized Anxiety Disorder-7; GAD-7), depression (Patient Health Questionnaire; PHQ-9), and psychological distress (Brief Adjustment Scale-6; BASE-6). Methods: This retrospective observational study included patient intake data collected from April 2020 to March 2021. Patient (N = 842) reports on the CEC’s five domain questions were aggregated to calculate average reports of COVID-19 related impacts at intake over the initial 12 months of the pandemic. Trends in COVID-19 related impacts were examined, and non-aggregated scores on the PHQ-9, GAD-7, and BASE-6 were compared to primary dichotomous (yes/no) CEC survey questions via Wilcoxon rank- sum testing. Results: Results capture the relationship between COVID-19 exposure, COVID-19- related sequelae and behaviors, and psychological symptom severity. Specifically, Wilcoxon rank-sum tests indicate that social determinants of health (SDOH), negative mental health impacts, and positive coping skill use were significantly associated with psychological symptomatology including overall psychological functioning via the BASE-6, anxiety via the GAD-7, and depressive symptoms via the PHQ-9. Results regarding SDOH were as follows: BASE-6 (w = 44,005, p < 0.001), GAD-7 (w = 44,116, p < 0.001), and PHQ-9 (w = 43,299, p < 0.001). Regarding negative mental health outcomes, the results were: BASE-6 (w = 38,374, p < 0.001), GAD-7 (w = 39,511, p < 0.001), and PHQ-9 (w = 40,154, p < 0.001). As the initial year of the pandemic elapsed, incoming patients demonstrated increased rates of suspected or confirmed exposure to COVID-19, (+2.29%, t = 3.19, p = 0.01), reported fewer negative impacts of COVID-19 on SDOH (−3.53%, t= −2.45, p = 0.034), and less engagement in positive coping strategies (−1.47%, t = −3.14, p = 0.010). Conclusions: Psychosocial factors related to COVID-19 are discussed, as well as opportunities for further research on the relationship between psychological symptomatology and the impact of COVID-19 on health-related behaviors.
  • Non-trivial area operators require non-local magic
    Cao, ChunJun (2024-11-19)
    We show that no stabilizer codes over any local dimension can support a non-trivial area operator for any bipartition of the physical degrees of freedom even if certain code subalgebras contain non-trivial centers. This conclusion also extends to more general quantum codes whose logical operators satisfy certain factorization properties, including any complementary code that encodes qubits and supports transversal logical gates that form a nice unitary basis. These results support the observation that some desirable conditions for fault tolerance are in tension with emergent gravity and suggest that non-local “magic” would play an important role in reproducing features of gravitational back-reaction and the quantum extremal surface formula. We comment on conditions needed to circumvent the no-go result and examine some simple instances of non-stabilizer codes that do have non-trivial area operators.
  • Genomic epidemiology of early SARS-CoV-2 transmission dynamics in Bangladesh
    Carnegie, L.; McCrone, J. T.; du Plessis, L.; Hasan, M.; Ali, M.Z.; Begum, R.; Hassan, M.Z.; Islam, S.; Rahman, M.H.; Uddin, A.S.M.; Sarker, M.S.; Das, T.; Hossain, M.; Khan, M.; Razu, M.H.; Akram, A.; Arina, S.; Hoque, E.; Molla, M.M.A.; Nafisaa, T.; Angra, P.; Rambaut, A.; Pullan, S.T.; Osman, K.L.; Hoque, M.A.; Biswas, P.; Flora, M.S.; Raghwani, J.; Fournié, G.; Samad, M.A.; Hill, S.C. (2024-11-13)
    Background: Genomic epidemiology has helped reconstruct the global and regional movement of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is still a lack of understanding of SARS-CoV-2 spread in some of the world’s least developed countries (LDCs). Methods: To begin to address this disparity, we studied the transmission dynamics of the virus in Bangladesh during the country’s first COVID-19 wave by analysing case reports and whole-genome sequences from all eight divisions of the country. Results: We detected > 50 virus introductions to the country during the period, including during a period of national lockdown. Additionally, through discrete phylogeographic analyses, we identified that geographical distance and population -density and/or -size influenced virus spatial dispersal in Bangladesh. Conclusions: Overall, this study expands our knowledge of SARS-CoV-2 genomic epidemiology in Bangladesh, shedding light on crucial transmission characteristics within the country, while also acknowledging resemblances and differences to patterns observed in other nations.
  • Evaluating attachment-based family therapy in residential treatment in the United States: does adolescents’ increased attachment security to caregivers lead to decreases in depressive symptoms?
    Diamond, Guy; Rivers, Alannah S.; Winston-Lindeboom, Payne; Russon, Jody M.; Roeske, Michael (2024-11-13)
    Background: The inclusion of family therapy in residential treatment centers (RTCs) has increased over time. However, there is little data on whether empirically-supported family therapies (ESFTs) are being adopted and if they contribute to treatment effectiveness. This study aimed to test whether Attachment-Based Family Therapy (ABFT), an ESFT integrated into a large residential psychiatric system, would improve perceived attachment insecurity (anxiety and avoidance) and contribute to decreases in depression for adolescents. Method: ABFT was integrated into the clinical program of a large, residential psychiatric system. All family therapists were trained to a level of certification. Improvement was measured by changes in adolescent’s perceived attachment to caregivers and reduction in depressive symptoms. The sample included 4786 patients. Attachment insecurity and depressive symptoms were measured at intake, week 3, and week 5. A random-intercept, cross-lagged panel model was used to examine the relationships between attachment and depression over time. Results: The results generally supported hypotheses. Attachment insecurity and depressive symptoms improved over the five weeks of treatment. Improvements in attachment avoidance preceded improvements in depressive symptoms within subjects, over time. Simultaneously, improvements in depressive symptoms preceded those in both dimensions of attachment. Thus, improvement in perceived attachment was associated with a reduction in depressive symptoms. Conclusion: RTCs that can generate improvements in attachment insecurity and depressive symptoms, via ABFT or other ESFTs, might improve treatment outcomes, and ideally, adolescents’ successful transition back home to families. More research is needed to disentangle the contribution of ABFT and other treatment elements in a multimodal, residential treatment program. The study supports the call for increased incorporation of families into the RTC treatment process.
  • Generalized symmetries in 2D from string theory: SymTFTs, intrinsic relativeness, and anomalies of non-invertible symmetries
    Franco, Sebastián; Yu, Xingyang (2024-11-05)
    Generalized global symmetries, in particular non-invertible and categorical symmetries, have become a focal point in the recent study of quantum field theory (QFT). In this paper, we investigate aspects of symmetry topological field theories (SymTFTs) and anomalies of non-invertible symmetries for 2D QFTs from a string theory perspective. Our primary focus is on an infinite class of 2D QFTs engineered on D1-branes probing toric Calabi-Yau 4-fold singularities. We derive 3D SymTFTs from the topological sector of IIB supergravity and discuss the resulting 2D QFTs, which can be intrinsically relative or absolute. For intrinsically relative QFTs, we propose a sufficient condition for them to exist. For absolute QFTs, we show that they exhibit non-invertible symmetries with an elegant brane origin. Furthermore, we find that these non-invertible symmetries can suffer from anomalies, which we discuss from a top-down perspective. Explicit examples are provided, including theories for Y(p,k)(ℙ2), Y(2,0)(ℙ1 × ℙ1), and ℂ4/ℤ4 geometries.
  • Expanding methods to address RE-AIM metrics in hybrid effectiveness-implementation studies
    Harden, Samantha M.; Galaviz, Karla I.; Estabrooks, Paul A. (2024-11-04)
    Background: Dissemination and implementation science is an evolving field that focuses on the strategies and mechanisms by which scientific evidence is adopted, used, and sustained in clinical and community practice. Main body: Implementation scientists are confronted by the challenge to balance rigor and generalizability in their work while also attempting to speed the translation of evidence into clinical and community practice. Hybrid Effectiveness-Implementation studies and the RE-AIM framework were conceptualized to address these challenges. Hybrid Effectiveness-Implementation (HEI) studies provide methods of examining the effectiveness of health promoting interventions while concurrently assessing the utility of dissemination and implementation strategies designed to enhance the application of evidence-based principles in practice. RE-AIM provides a set of planning and evaluation dimensions that can be assessed with a goal to balance internal and external validity. The purpose of this commentary is to provide clarity on definitions of each approach and how to effectively use them together to answer research questions that will advance dissemination and implementation science for health promotion. Conclusions: We provide examples of concerted use of RE-AIM within HEI studies from the literature and focus on language to provide a clarity and consistency across research questions, designs, and settings. We share how to operationalize RE-AIM dimensions in HEI studies for both dissemination and implementation strategies. Future directions include refining, defining, and evaluating each RE-AIM dimension within hybrid studies.
  • The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation
    Kosch, Tiffany A.; Torres-Sánchez, María; Liedtke, H. C.; Summers, Kyle; Yun, Maximina H.; Crawford, Andrew J.; Maddock, Simon T.; Ahammed, Md. S.; Araújo, Victor L. N.; Bertola, Lorenzo V.; Bucciarelli, Gary M.; Carné, Albert; Carneiro, Céline M.; Chan, Kin O.; Chen, Ying; Crottini, Angelica; da Silva, Jessica M.; Denton, Robert D.; Dittrich, Carolin; Espregueira Themudo, Gonçalo; Farquharson, Katherine A.; Forsdick, Natalie J.; Gilbert, Edward; Che, Jing; Katzenback, Barbara A.; Kotharambath, Ramachandran; Levis, Nicholas A.; Márquez, Roberto; Mazepa, Glib; Mulder, Kevin P.; Müller, Hendrik; O’Connell, Mary J.; Orozco-terWengel, Pablo; Palomar, Gemma; Petzold, Alice; Pfennig, David W.; Pfennig, Karin S.; Reichert, Michael S.; Robert, Jacques; Scherz, Mark D.; Siu-Ting, Karen; Snead, Anthony A.; Stöck, Matthias; Stuckert, Adam M. M.; Stynoski, Jennifer L.; Tarvin, Rebecca D.; Wollenberg Valero, Katharina C. (2024-11-01)
    Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to “leap” to the next level.
  • Quantitative ultrasound assessment of fatty infiltration of the rotator cuff muscles using backscatter coefficient
    Toto-Brocchi, Marco; Wu, Yuanshan; Jerban, Saeed; Han, Aiguo; Andre, Michael; Shah, Sameer B.; Chang, Eric Y. (2024-10-22)
    Background: To prospectively evaluate ultrasound backscatter coefficients (BSCs) of the supraspinatus and infraspinatus muscles and compare with Goutallier classification on magnetic resonance imaging (MRI). Methods: Fifty-six participants had shoulder MRI exams and ultrasound exams of the supraspinatus and infraspinatus muscles. Goutallier MRI grades were determined and BSCs were measured. Group means were compared and the strength of relationships between the measures were determined. Using binarized Goutallier groups (0–2 versus 3–4), areas under the receiver operating characteristic curves (AUROCs) were calculated. The nearest integer cutoff value was determined using Youden’s index. Results: BSC values were significantly different among most Goutallier grades for the supraspinatus and infraspinatus muscles (both p < 0.001). Strong correlations were found between the BSC values and Goutallier grades for the supraspinatus (τb = 0.72, p < 0.001) and infraspinatus (τb = 0.79, p < 0.001) muscles. BSC showed excellent performance for classification of the binarized groups (0–2 versus 3–4) for both supraspinatus (AUROC = 0.98, p < 0.0001) and infraspinatus (AUROC = 0.98, p < 0.0001) muscles. Using a cutoff BSC value of −17 dB, sensitivity, specificity, and accuracy for severe fatty infiltration were 87.0%, 90.0%, and 87.5% for the supraspinatus muscle, and 93.6%, 87.5%, and 92.7% for the infraspinatus muscle. Conclusion: BSC can be applied to the rotator cuff muscles for assessment of fatty infiltration. For both the supraspinatus and infraspinatus muscles, BSC values significantly increased with higher Goutallier grades and showed strong performance in distinguishing low versus high Goutallier grades. Relevance statement: Fatty infiltration of the rotator cuff muscles can be quantified using BSC values, which are higher with increasing Goutallier grades. Key Points Ultrasound BSC measurements are reliable for the quantification of muscle fatty infiltration. BCS values increased with higher Goutallier MRI grades. BCS values demonstrated high performance for distinguishing muscle fatty infiltration groups.
  • Decomposition squared
    Sharpe, Eric R.; Zhang, H. (2024-10-23)
    Abstract In this paper, we test and extend a proposal of Gu, Pei, and Zhang for an application of decomposition to three-dimensional theories with one-form symmetries and to quantum K theory. The theories themselves do not decompose, but, OPEs of parallel one-dimensional objects (such as Wilson lines) and dimensional reductions to two dimensions do decompose, sometimes in two independent ways. We apply this to extend conjectures for quantum K theory rings of gerbes (realized by three-dimensional gauge theories with one-form symmetries) via both orbifold partition functions and gauged linear sigma models.
  • Demonstration of neutron identification in neutrino interactions in the MicroBooNE liquid argon time projection chamber
    Abratenko, P.; Alterkait, O.; Aldana, D. A.; Arellano, L.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnard, A.; Barr, G.; Barrow, D.; Barrow, J.; Basque, V.; Bateman, J.; Rodrigues, O. B.; Berkman, S.; Bhanderi, A.; Bhat, A.; Bhattacharya, M.; Bishai, M.; Blake, A.; Bogart, B.; Bolton, T.; Book, J. Y.; Brunetti, M. B.; Camilleri, L.; Cao, Y.; Caratelli, D.; Cavanna, F.; Cerati, G.; Chappell, A.; Chen, Y.; Conrad, J. M.; Convery, M.; Cooper-Troendle, L.; Crespo-Anadón, J. I.; Cross, R.; Del Tutto, M.; Dennis, S. R.; Detje, P.; Diurba, R.; Djurcic, Z.; Dorrill, R.; Duffy, K.; Dytman, S.; Eberly, B.; Englezos, P.; Ereditato, A.; Evans, J. J.; Fine, R.; Foreman, W.; Fleming, B. T.; Franco, D.; Furmanski, A. P.; Gao, F.; Garcia-Gamez, D.; Gardiner, S.; Ge, G.; Gollapinni, S.; Gramellini, E.; Green, P.; Greenlee, H.; Gu, L.; Gu, W.; Guenette, R.; Guzowski, P.; Hagaman, L.; Handley, M. D.; Hen, O.; Hilgenberg, C.; Horton-Smith, G. A.; Imani, Z.; Irwin, B.; Ismail, M. S.; James, C.; Ji, X.; Jo, J. H.; Johnson, R. A.; Jwa, Y.-J.; Kalra, D.; Kamp, N.; Karagiorgi, G.; Ketchum, W.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Lane, N.; Li, J.-Y.; Li, Y.; Lin, K.; Littlejohn, B. R.; Liu, H.; Louis, W. C.; Luo, X.; Mariani, Camillo; Marsden, D.; Marshall, J.; Martinez, N.; Caicedo, D. A. M.; Martynenko, S.; Mastbaum, A.; Mawby, I.; McConkey, N.; Meddage, V.; Mendez, J.; Micallef, J.; Miller, K.; Mogan, A.; Mohayai, T.; Mooney, M.; Moor, A. F.; Moore, C. D.; Lepin, L. M.; Moudgalya, M. M.; Mulleriababu, S.; Naples, D.; Navrer-Agasson, A.; Nayak, N.; Nebot-Guinot, M.; Nguyen, C.; Nowak, J.; Oza, N.; Palamara, O.; Pallat, N.; Paolone, V.; Papadopoulou, A.; Papavassiliou, V.; Parkinson, H. B.; Pate, S. F.; Patel, N.; Pavlovic, Z.; Piasetzky, E.; Pletcher, K.; Pophale, I.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Reggiani-Guzzo, M.; Ren, L.; Rochester, L.; Rondon, J. R.; Rosenberg, M.; Ross-Lonergan, M.; Safa, I.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sharankova, R.; Shi, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Spitz, J.; Stancari, M.; John, J. S.; Strauss, T.; Szelc, A. M.; Tang, W.; Taniuchi, N.; Terao, K.; Thorpe, C.; Torbunov, D.; Totani, D.; Toups, M.; Trettin, A.; Tsai, Y.-T.; Tyler, J.; Uchida, M. A.; Usher, T.; Viren, B.; Wang, J.; Weber, M.; Wei, H.; White, A. J.; Wolbers, S.; Wongjirad, T.; Wospakrik, M.; Wresilo, K.; Wu, W.; Yandel, E.; Yang, T.; Yates, L. E.; Yu, H. W.; Zeller, G. P.; Zennamo, J.; Zhang, C. (2024-10-14)
    A significant challenge in measurements of neutrino oscillations is reconstructing the incoming neutrino energies. While modern fully-active tracking calorimeters such as liquid argon time projection chambers in principle allow the measurement of all final state particles above some detection threshold, undetected neutrons remain a considerable source of missing energy with little to no data constraining their production rates and kinematics. We present the first demonstration of tagging neutrino-induced neutrons in liquid argon time projection chambers using secondary protons emitted from neutron-argon interactions in the MicroBooNE detector. We describe the method developed to identify neutrino-induced neutrons and demonstrate its performance using neutrons produced in muon-neutrino charged current interactions. The method is validated using a small subset of MicroBooNE’s total dataset. The selection yields a sample with 60 % of selected tracks corresponding to neutron-induced secondary protons. At this purity, the integrated efficiency is 8.4% for neutrons that produce a detectable proton.
  • Chern-Simons theory, decomposition, and the A model
    Pantev, Tony; Sharpe, Eric; Yu, Xingyang (2024-10-15)
    In this paper, we discuss how gauging one-form symmetries in Chern-Simons theories is implemented in an A-twisted topological open string theory. For example, the contribution from a fixed H/Z bundle on a three-manifold M, arising in a BZ gauging of H Chern-Simons, for Z a finite subgroup of the center of H, is described by an open string worldsheet theory whose bulk is a sigma model with target a Z-gerbe (a bundle of one-form symmetries) over T∗M, of characteristic class determined by the H/Z bundle. We give a worldsheet picture of the decomposition of one-form-symmetry-gauged Chern-Simons in three dimensions, and we describe how a target-space constraint on bundles arising in the gauged Chern-Simons theory has a natural worldsheet realization. Our proposal provides examples of the expected correspondence between worldsheet global higher-form symmetries, and target-space gauged higher-form symmetries.
  • Scintillation light in SBND: simulation, reconstruction, and expected performance of the photon detection system
    Mariani, Camillo (2024-10-10)
    SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its design is a dual readout concept combining a system of 120 photomultiplier tubes, used for triggering, with a system of 192 X-ARAPUCA devices, located behind the anode wire planes. Furthermore, covering the cathode plane with highly-reflective panels coated with a wavelength-shifting compound recovers part of the light emitted towards the cathode, where no optical detectors exist. We show how this new design provides a high light yield and a more uniform detection efficiency, an excellent timing resolution and an independent 3D-position reconstruction using only the scintillation light. Finally, the whole reconstruction chain is applied to recover the temporal structure of the beam spill, which is resolved with a resolution on the order of nanoseconds.
  • Connexin 43 regulates intercellular mitochondrial transfer from human mesenchymal stromal cells to chondrocytes
    Irwin, Rebecca M.; Thomas, Matthew A.; Fahey, Megan J.; Mayán, María D.; Smyth, James W.; Delco, Michelle L. (2024-10-10)
    Background: The phenomenon of intercellular mitochondrial transfer from mesenchymal stromal cells (MSCs) has shown promise for improving tissue healing after injury and has potential for treating degenerative diseases like osteoarthritis (OA). Recently MSC to chondrocyte mitochondrial transfer has been documented, but the mechanism of transfer is unknown. Full-length connexin 43 (Cx43, encoded by GJA1) and the truncated, internally translated isoform GJA1-20k have been implicated in mitochondrial transfer between highly oxidative cells, but have not been explored in orthopaedic tissues. Here, our goal was to investigate the role of Cx43 in MSC to chondrocyte mitochondrial transfer. In this study, we tested the hypotheses that (a) mitochondrial transfer from MSCs to chondrocytes is increased when chondrocytes are under oxidative stress and (b) MSC Cx43 expression mediates mitochondrial transfer to chondrocytes. Methods: Oxidative stress was induced in immortalized human chondrocytes using tert-Butyl hydroperoxide (t-BHP) and cells were evaluated for mitochondrial membrane depolarization and reactive oxygen species (ROS) production. Human bone-marrow derived MSCs were transduced for mitochondrial fluorescence using lentiviral vectors. MSC Cx43 expression was knocked down using siRNA or overexpressed (GJA1 + and GJA1-20k+) using lentiviral transduction. Chondrocytes and MSCs were co-cultured for 24 h in direct contact or separated using transwells. Mitochondrial transfer was quantified using flow cytometry. Co-cultures were fixed and stained for actin and Cx43 to visualize cell-cell interactions during transfer. Results: Mitochondrial transfer was significantly higher in t-BHP-stressed chondrocytes. Contact co-cultures had significantly higher mitochondrial transfer compared to transwell co-cultures. Confocal images showed direct cell contacts between MSCs and chondrocytes where Cx43 staining was enriched at the terminal ends of actin cellular extensions containing mitochondria in MSCs. MSC Cx43 expression was associated with the magnitude of mitochondrial transfer to chondrocytes; knocking down Cx43 significantly decreased transfer while Cx43 overexpression significantly increased transfer. Interestingly, GJA1-20k expression was highly correlated with incidence of mitochondrial transfer from MSCs to chondrocytes. Conclusions Overexpression of GJA1-20k in MSCs increases mitochondrial transfer to chondrocytes, highlighting GJA1-20k as a potential target for promoting mitochondrial transfer from MSCs as a regenerative therapy for cartilage tissue repair in OA.
  • Altered microRNA composition in the uterine lumen fluid in cattle (Bos taurus) pregnancies initiated by artificial insemination or transfer of an in vitro produced embryo
    Biase, Fernando H.; Moorey, Sarah E.; Schnuelle, Julie G.; Rodning, Soren; Ortega, Martha S.; Spencer, Thomas E. (2024-09-13)
    Background: MicroRNAs (miRNAs) are presented in the uterine lumen of many mammals, and in vitro experiments have determined that several miRNAs are important for the regulation of endometrial and trophoblast functions. Our aim was to identify and contrast the miRNAs present in extracellular vesicles (EVs) in the uterine lumen fluid (ULF) at the onset of attachment in cattle pregnancies (gestation d 18) initiated by artificial insemination (AI) or by the transfer of an in vitro-produced blastocyst (IVP-ET). A third group had no conceptus after the transfer of an IVP embryo. Results: The abundance of 263 annotated miRNAs was quantified in the EVs collected from ULF. There was an increase in the transcript abundance of 20 miRNAs in the ULF EVs from the AI pregnant group, while 4 miRNAs had a lower abundance relative to the group not containing a conceptus. Additionally, 4 miRNAs were more abundant in ULF EVs in the AI pregnant group relative to IVP-ET group (bta-mir-17, bta-mir-7-3, MIR7-1, MIR18A). Specific miRNAs in the ULF EVs were co-expressed with messenger RNAs expressed in extra-embryonic tissues and endometrium, including genes that are known to be their targets. Conclusions: The results provide biological insights into the participation of miRNAs in the regulation of trophoblast proliferation and differentiation, as well as in endometrium receptivity. The knowledge that in vitro cultured embryos can contribute to the altered abundance of specific miRNAs in the uterine lumen can lead to the development of corrective approaches to reduce conceptus losses during the first month of pregnancy in cattle.
  • Evaluation of 1021Bp, a close relative of Pseudomonas eucalypticola, for potential of plant growth promotion, fungal pathogen suppression and boxwood blight control
    Kong, Ping; Hong, Chuanxue (2024-09-14)
    Background: Pseudomonas eucalypticola, a new species of the P. fluorescens group that generates most Pseudomonas-based biocontrol agents, has not been found in any plants other than Eucalyptus dunnii leaves. Except for antagonism to the growth of a few fungi, its features in plant growth promotion and disease control have not been evaluated. Here, we identified a similar species of P. eucalypticola, 1021Bp, from endophyte cultures of healthy leaves of English boxwood (Buxus sempervirens ‘Suffruticosa’) and investigated its antifungal activity, plant growth promotion traits, and potential for boxwood blight control. Results: Colorimetric or plate assays showed the properties of 1021Bp in nitrogen fixation, phosphate solubilization, and production of indole-3-acetic acid (IAA) and siderophores, as well as the growth suppression of all five plant fungal pathogens, including causal agents of widespread plant diseases, gray mold, and anthracnose. Boxwood plant leaves received 87.4% and 65.8% protection from infection when sprayed with cell-free cultural supernatant (CFS) but not the resuspended bacterial cells at 108–9/mL of 1021Bp at one and seven days before inoculation (dbi) with boxwood blight pathogen, Calonectria pseudonaviculata, at 5 × 104 spores/mL. They also received similarly high protection with the 1021Bp cell culture without separation of cells and CFS at 14 dbi (67.5%), suggesting a key role of 1021Bp metabolites in disease control. Conclusions: Given the features of plant growth and health and its similarity to P. eucalypticola with the P. fluorescens lineage, 1021Bp has great potential to be developed as a safe and environmentally friendly biofungicide and biofertilizer. However, its metabolites are the major contributors to 1021Bp activity for plant growth and health. Application with the bacterial cells alone, especially with nonionic surfactants, may result in poor performance unless survival conditions are present.
  • Herding and investor sentiment after the cryptocurrency crash: evidence from Twitter and natural language processing
    Cary, Michael (2024-09-02)
    Although the 2022 cryptocurrency market crash prompted despair among investors, the rallying cry, “wagmi” (We’re all gonna make it.) emerged among cryptocurrency enthusiasts in the aftermath. Did cryptocurrency enthusiasts respond to this crash differently compared to traditional investors? Using natural language processing techniques applied to Twitter data, this study employed a difference-in-differences method to determine whether the cryptocurrency market crash had a differential effect on investor sentiment toward cryptocurrency enthusiasts relative to more traditional investors. The results indicate that the crash affected investor sentiment among cryptocurrency enthusiastic investors differently from traditional investors. In particular, cryptocurrency enthusiasts’ tweets became more neutral and, surprisingly, less negative. This result appears to be primarily driven by a deliberate, collectivist effort to promote positivity within the cryptocurrency community (“wagmi”). Considering the more nuanced emotional content of tweets, it appears that cryptocurrency enthusiasts expressed less joy and surprise in the aftermath of the cryptocurrency crash than traditional investors. Moreover, cryptocurrency enthusiasts tweeted more frequently after the cryptocurrency crash, with a relative increase in tweet frequency of approximately one tweet per day. An analysis of the specific textual content of tweets provides evidence of herding behavior among cryptocurrency enthusiasts.
  • Identification of novel cattle (Bos taurus) genes and biological insights of their function in pre-implantation embryo development
    Schettini, Gustavo P.; Morozyuk, Michael; Biase, Fernando H. (2024-08-09)
    Background: Appropriate regulation of genes expressed in oocytes and embryos is essential for acquisition of developmental competence in mammals. Here, we hypothesized that several genes expressed in oocytes and pre-implantation embryos remain unknown. Our goal was to reconstruct the transcriptome of oocytes (germinal vesicle and metaphase II) and pre-implantation cattle embryos (blastocysts) using short-read and long-read sequences to identify putative new genes. Results: We identified 274,342 transcript sequences and 3,033 of those loci do not match a gene present in official annotations and thus are potential new genes. Notably, 63.67% (1,931/3,033) of potential novel genes exhibited coding potential. Also noteworthy, 97.92% of the putative novel genes overlapped annotation with transposable elements. Comparative analysis of transcript abundance identified that 1,840 novel genes (recently added to the annotation) or potential new genes were differentially expressed between developmental stages (FDR < 0.01). We also determined that 522 novel or potential new genes (448 and 34, respectively) were upregulated at eight-cell embryos compared to oocytes (FDR < 0.01). In eight-cell embryos, 102 novel or putative new genes were co-expressed (|r|> 0.85, P < 1 × 10–8) with several genes annotated with gene ontology biological processes related to pluripotency maintenance and embryo development. CRISPR-Cas9 genome editing confirmed that the disruption of one of the novel genes highly expressed in eight-cell embryos reduced blastocyst development (ENSBTAG00000068261, P = 1.55 × 10–7). Conclusions: Our results revealed several putative new genes that need careful annotation. Many of the putative new genes have dynamic regulation during pre-implantation development and are important components of gene regulatory networks involved in pluripotency and blastocyst formation.
  • Genetic diversity of United States Rambouillet, Katahdin and Dorper sheep
    Becker, Gabrielle M.; Thorne, Jacob W.; Burke, Joan M.; Lewis, Ronald M.; Notter, David R.; Morgan, James L. M.; Schauer, Christopher S.; Stewart, Whit C.; Redden, R. R.; Murdoch, Brenda M. (2024-07-30)
    Background: Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright’s fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). Results: Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. Conclusions: In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.
  • Review on Lithium-ion Battery PHM from the Perspective of Key PHM Steps
    Kong, Jinzhen; Liu, Jie; Zhu, Jingzhe; Zhang, Xi; Tsui, Kwok-Leung; Peng, Zhike; Wang, Dong (2024-07-22)
    Prognostics and health management (PHM) has gotten considerable attention in the background of Industry 4.0. Battery PHM contributes to the reliable and safe operation of electric devices. Nevertheless, relevant reviews are still continuously updated over time. In this paper, we browsed extensive literature related to battery PHM from 2018 to 2023 and summarized advances in battery PHM field, including battery testing and public datasets, fault diagnosis and prediction methods, health status estimation and health management methods. The last topic includes state of health estimation methods, remaining useful life prediction methods and predictive maintenance methods. Each of these categories is introduced and discussed in details. Based on this survey, we accordingly discuss challenges left to battery PHM, and provide future research opportunities. This research systematically reviews recent research about battery PHM from the perspective of key PHM steps and provide some valuable prospects for researchers and practitioners.
  • Refining flowering date enhances sesame yield independently of day-length
    Sabag, Idan; Pnini, Shaked; Morota, Gota; Peleg, Zvi (2024-07-26)
    Background: The transition from vegetative to reproductive growth is a key factor in yield maximization. Sesame (Sesamum indicum), an indeterminate short-day oilseed crop, is rapidly being introduced into new cultivation areas. Thus, decoding its flowering mechanism is necessary to facilitate adaptation to environmental conditions. In the current study, we uncover the effect of day-length on flowering and yield components using F2 populations segregating for previously identified quantitative trait loci (Si_DTF QTL) confirming these traits. Results: Generally, day-length affected all phenotypic traits, with short-day preceding days to flowering and reducing yield components. Interestingly, the average days to flowering required for yield maximization was 50 to 55 days, regardless of day-length. In addition, we found that Si_DTF QTL is more associated with seed-yield and yield components than with days to flowering. A bulk-segregation analysis was applied to identify additional QTL differing in allele frequencies between early and late flowering under both day-length conditions. Candidate genes mining within the identified major QTL intervals revealed two flowering-related genes with different expression levels between the parental lines, indicating their contribution to sesame flowering regulation. Conclusions: Our findings demonstrate the essential role of flowering date on yield components and will serve as a basis for future sesame breeding.