‘Beating the news’ with EMBERS: Forecasting Civil Unrest using Open Source Indicators
dc.contributor.author | Ramakrishnan, Naren | en |
dc.contributor.author | Butler, Patrick | en |
dc.contributor.author | Self, Nathan | en |
dc.contributor.author | Khandpur, Rupinder P. | en |
dc.contributor.author | Saraf, Parang | en |
dc.contributor.author | Wang, Wei | en |
dc.contributor.author | Cadena, Jose | en |
dc.contributor.author | Vullikanti, Anil Kumar S. | en |
dc.contributor.author | Korkmaz, Gizem | en |
dc.contributor.author | Kuhlman, Christopher J. | en |
dc.contributor.author | Marathe, Achla | en |
dc.contributor.author | Zhao, Liang | en |
dc.contributor.author | Ting, Hua | en |
dc.contributor.author | Huang, Bert | en |
dc.contributor.author | Srinivasan, Aravind | en |
dc.contributor.author | Trinh, Khoa | en |
dc.contributor.author | Getoor, Lise | en |
dc.contributor.author | Katz, Graham | en |
dc.contributor.author | Doyle, Andy | en |
dc.contributor.author | Ackermann, Chris | en |
dc.contributor.author | Zavorin, Ilya | en |
dc.contributor.author | Ford, Jim | en |
dc.contributor.author | Summers, Kristen | en |
dc.contributor.author | Fayed, Youssef | en |
dc.contributor.author | Arredondo, Jaime | en |
dc.contributor.author | Gupta, Dipak | en |
dc.contributor.author | Mares, David | en |
dc.contributor.author | Muthia, Sathappan | en |
dc.contributor.author | Chen, Feng | en |
dc.contributor.author | Lu, Chang-Tien | en |
dc.contributor.department | Computer Science | en |
dc.date.accessioned | 2017-03-06T01:45:35Z | en |
dc.date.available | 2017-03-06T01:45:35Z | en |
dc.date.issued | 2014 | en |
dc.description.abstract | We describe the design, implementation, and evaluation of EMBERS, an automated, 24x7 continuous system for forecasting civil unrest across 10 countries of Latin America using open source indicators such as tweets, news sources, blogs, economic indicators, and other data sources. Unlike retrospective studies, EMBERS has been making forecasts into the future since Nov 2012 which have been (and continue to be) evaluated by an independent T&E team (MITRE). Of note, EMBERS has successfully forecast the uptick and downtick of incidents during the June 2013 protests in Brazil. We outline the system architecture of EMBERS, individual models that leverage specific data sources, and a fusion and suppression engine that supports trading off specific evaluation criteria. EMBERS also provides an audit trail interface that enables the investigation of why specific predictions were made along with the data utilized for forecasting. Through numerous evaluations, we demonstrate the superiority of EMBERS over baserate methods and its capability to forecast significant societal happenings. | en |
dc.description.notes | date-added: 2015-04-10 20:27:30 +0000 date-modified: 2016-03-12 22:32:58 +0000 | en |
dc.format.extent | 1799 - 1808 page(s) | en |
dc.identifier.orcid | Huang, B [0000-0002-8548-7246] | en |
dc.identifier.uri | http://hdl.handle.net/10919/75252 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | ‘Beating the news’ with EMBERS: Forecasting Civil Unrest using Open Source Indicators | en |
dc.title.serial | ACM SIGKDD Conference on Knowledge Discovery and Data Mining | en |
dc.type | Conference proceeding | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/Computer Science | en |
pubs.organisational-group | /Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Biocomplexity Institute | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Biocomplexity Institute/Researchers | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Biocomplexity Institute/SelectedFaculty1 | en |