Elucidating essential roles of oomycee effector proteins in immune suppression and in targeting hormonal pathways in the host plant

Files

TR Number

Date

2013-09-25

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Effector proteins are exported to the interior of host cells by numerous plant pathogens. Effector proteins have been well characterized in bacteria. However, the mechanisms through which these effectors promote virulence are largely unknown. Bioinformatic analysis of genome sequences from oomycete pathogens Phytophthora sojae, P. ramorum, P. infestans and Hyaloperonospora arabidopsidis (Hpa) have led to the identification of a large number of candidate effector genes. These effector genes have characteristic motifs (signal peptide, RxLR and dEER) that target the effectors into plant cells. Although these effector genes are very diverse, certain genes are conserved between P. sojae and H. arabidopsidis, suggesting that they play important roles in pathogenicity. The goal of my first project was to characterize a pair of conserved effector candidates from Hpa and P. sojae. We hypothesized that these effectors have important conserved roles with regard to infection. We found that the Hpa effector was expressed early during the course of infection of Arabidopsis and triggered an ecotype-specific defense response in Arabidopsis, suggesting that it was recognized by host surveillance proteins. Both the effectors from Hpa and P. sojae respectively could suppress immunity triggered by pathogen associated molecular patterns (PTI) and by effectors (ETI) in planta. They also enhanced bacterial virulence in Arabidopsis when delivered by the Type III secretion system. Similar results were seen with experiments with transgenic Arabidopsis expressing the effectors.

My second project showed that a different Hpa effector protein, HaRxL10, targets the Jasmonate-Zim Domain (JAZ) proteins that repressed responses to the phytohormone jasmonic acid (JA). This manipulation activates a regulatory cascade that reduces accumulation of a second phytohormone, salicylic acid (SA) and thereby attenuates immunity. This virulence mechanism is functionally equivalent to but mechanistically distinct from activation of JA-SA crosstalk by the bacterial JA mimic coronatine. These results reveal a new mechanism underpinning oomycete virulence and demonstrate that the JA-SA crosstalk is an Achilles' heel that is manipulated by unrelated pathogens through distinct mechanisms.

Description

Keywords

oomycete, Hyaloperonospora arabidopsidis, haustoria, effector proteins, pathogenesis, immunity

Citation