VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Time-dependent dissipation in nonlinear Schrodinger systems

dc.contributor.authorLange, Horsten
dc.contributor.authorToomire, Bruce V.en
dc.contributor.authorZweifel, Paul F.en
dc.contributor.departmentPhysicsen
dc.date.accessed2014-03-20en
dc.date.accessioned2014-04-09T18:12:29Zen
dc.date.available2014-04-09T18:12:29Zen
dc.date.issued1995-03en
dc.description.abstractA coupled nonlinear Schrödinger–Poisson equation is considered which contains a time‐dependent dissipation function as a specific model of dissipation effects in nonlinear quantum transport theory and other areas. The Wigner–Poisson equation associated with this system is derived. Using conservation and quasiconservation laws and certain growth assumptions for the nonlinearities and the dissipation function, global existence of solutions to the Cauchy problem of the time‐dependent Schrödinger–Poisson system is shown both for small (attractive case) or arbitrary data (repulsive case).en
dc.identifier.citationLange, H.; Toomire, B.; Zweifel, P. F., "time-dependent dissipation in nonlinear Schrodinger systems," J. Math. Phys. 36, 1274 (1995); http://dx.doi.org/10.1063/1.531120en
dc.identifier.doihttps://doi.org/10.1063/1.531120en
dc.identifier.issn0022-2488en
dc.identifier.urihttp://hdl.handle.net/10919/47094en
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jmp/36/3/10.1063/1.531120en
dc.language.isoen_USen
dc.publisherAIP Publishingen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectquantumen
dc.titleTime-dependent dissipation in nonlinear Schrodinger systemsen
dc.title.serialJournal of Mathematical Physicsen
dc.typeArticle - Refereeden

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.531120.pdf
Size:
779.36 KB
Format:
Adobe Portable Document Format
Description:
Main article