Beyond Marginals: Learning Joint Spatio-Temporal Patterns for Multivariate Anomaly Detection

dc.contributor.authorRoy, Padmakshaen
dc.contributor.authorBoker, Almuatazbellahen
dc.contributor.authorMili, Lamine M.en
dc.date.accessioned2026-01-07T12:49:54Zen
dc.date.available2026-01-07T12:49:54Zen
dc.date.issued2025-09en
dc.description.abstractIn this paper, we aim to improve multivariate anomaly detection (AD) by modeling the time-varying non-linear spatio-temporal correlations found in multivariate time series data . In multivariate time series data, an anomaly may be indicated by the simultaneous deviation of interrelated time series from their expected collective behavior, even when no individual time series exhibits a clearly abnormal pattern on its own. In many existing approaches, time series variables are assumed to be (conditionally) independent, which oversimplifies real-world interactions. Our approach addresses this by modeling joint dependencies in the latent space and decoupling the modeling of marginal distributions, temporal dynamics, and inter-variable dependencies. We use a transformer encoder to capture temporal patterns, and to model spatial (inter-variable) dependencies, we fit a multi-variate likelihood and a copula. The temporal and the spatial components are trained jointly in a latent space using a self-supervised contrastive learning objective to learn meaningful feature representations to separate normal and anomaly samples.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.eissn2835-8856en
dc.identifier.orcidBoker, Almuatazbellah [0000-0002-9484-7266]en
dc.identifier.orcidMili, Lamine [0000-0001-6134-3945]en
dc.identifier.urihttps://hdl.handle.net/10919/140616en
dc.identifier.volume2025-Septemberen
dc.language.isoenen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleBeyond Marginals: Learning Joint Spatio-Temporal Patterns for Multivariate Anomaly Detectionen
dc.title.serialTransactions on Machine Learning Researchen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherJournal Articleen
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Electrical and Computer Engineeringen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen
pubs.organisational-groupVirginia Tech/Innovation Campusen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Roy_Boker_Mili_Beyond Marginals- Learning Joint Spatio-Temporal Patterns for Multivariate Anomaly Detection.pdf
Size:
3.7 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: