Beyond Marginals: Learning Joint Spatio-Temporal Patterns for Multivariate Anomaly Detection
| dc.contributor.author | Roy, Padmaksha | en |
| dc.contributor.author | Boker, Almuatazbellah | en |
| dc.contributor.author | Mili, Lamine M. | en |
| dc.date.accessioned | 2026-01-07T12:49:54Z | en |
| dc.date.available | 2026-01-07T12:49:54Z | en |
| dc.date.issued | 2025-09 | en |
| dc.description.abstract | In this paper, we aim to improve multivariate anomaly detection (AD) by modeling the time-varying non-linear spatio-temporal correlations found in multivariate time series data . In multivariate time series data, an anomaly may be indicated by the simultaneous deviation of interrelated time series from their expected collective behavior, even when no individual time series exhibits a clearly abnormal pattern on its own. In many existing approaches, time series variables are assumed to be (conditionally) independent, which oversimplifies real-world interactions. Our approach addresses this by modeling joint dependencies in the latent space and decoupling the modeling of marginal distributions, temporal dynamics, and inter-variable dependencies. We use a transformer encoder to capture temporal patterns, and to model spatial (inter-variable) dependencies, we fit a multi-variate likelihood and a copula. The temporal and the spatial components are trained jointly in a latent space using a self-supervised contrastive learning objective to learn meaningful feature representations to separate normal and anomaly samples. | en |
| dc.description.version | Published version | en |
| dc.format.mimetype | application/pdf | en |
| dc.identifier.eissn | 2835-8856 | en |
| dc.identifier.orcid | Boker, Almuatazbellah [0000-0002-9484-7266] | en |
| dc.identifier.orcid | Mili, Lamine [0000-0001-6134-3945] | en |
| dc.identifier.uri | https://hdl.handle.net/10919/140616 | en |
| dc.identifier.volume | 2025-September | en |
| dc.language.iso | en | en |
| dc.rights | In Copyright | en |
| dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
| dc.title | Beyond Marginals: Learning Joint Spatio-Temporal Patterns for Multivariate Anomaly Detection | en |
| dc.title.serial | Transactions on Machine Learning Research | en |
| dc.type | Article - Refereed | en |
| dc.type.dcmitype | Text | en |
| dc.type.other | Journal Article | en |
| pubs.organisational-group | Virginia Tech | en |
| pubs.organisational-group | Virginia Tech/Engineering | en |
| pubs.organisational-group | Virginia Tech/Engineering/Electrical and Computer Engineering | en |
| pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
| pubs.organisational-group | Virginia Tech/Engineering/COE T&R Faculty | en |
| pubs.organisational-group | Virginia Tech/Innovation Campus | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Roy_Boker_Mili_Beyond Marginals- Learning Joint Spatio-Temporal Patterns for Multivariate Anomaly Detection.pdf
- Size:
- 3.7 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1