Least squares mixture decomposition estimation

dc.contributor.authorKim, Donggeonen
dc.contributor.committeechairTerrell, George R.en
dc.contributor.committeememberGood, Irving Johnen
dc.contributor.committeememberFoutz, Roberten
dc.contributor.committeememberSmith, Eric P.en
dc.contributor.committeememberCoakley, Clint W.en
dc.contributor.departmentStatisticsen
dc.date.accessioned2014-03-14T21:09:28Zen
dc.date.adate2009-02-13en
dc.date.available2014-03-14T21:09:28Zen
dc.date.issued1995-02-13en
dc.date.rdate2009-02-13en
dc.date.sdate2009-02-13en
dc.description.abstractThe Least Squares Mixture Decomposition Estimator (LSMDE) is a new nonparametric density estimation technique developed by modifying the ordinary kernel density estimators. While the ordinary kernel density estimator assumes equal weight (l/<i>n</i>) for each data point, LSMDE assigns the optimized weight to each data point via the quadratic programming under the Mean Integrated Squared Error (MISE) criterion. As results, we find out that the optimized weights for a given data set are far different from l/<i>n</i> for a reasonable smoothing parameter and, furthermore, many data points are assigned to zero weights after the optimization. This implies that LSMDE decomposes the underlying density function to a finite mixture distribution of <i>p</i> (< n) kernel functions. LSMDE turns out to be more informative, especially in multi-dimensional cases when the visualization of the density function is difficult, than the ordinary kernel density estimator by suggesting the underlying structure of a given data set.en
dc.description.degreePh. D.en
dc.format.extentx, 147 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-02132009-171622en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-02132009-171622/en
dc.identifier.urihttp://hdl.handle.net/10919/37348en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V856_1995.K56.pdfen
dc.relation.isformatofOCLC# 32884090en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectestimatorsen
dc.subject.lccLD5655.V856 1995.K56en
dc.titleLeast squares mixture decomposition estimationen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineStatisticsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1995.K56.pdf
Size:
5.91 MB
Format:
Adobe Portable Document Format
Description: