Eavesdropper Avoidance through Adaptive Beam Management in SDR-Based MmWave Communications

dc.contributor.authorBaron-Hyppolite, Adrianen
dc.contributor.authorSantos, Joao F.en
dc.contributor.authorDaSilva, Luiz A.en
dc.contributor.authorKibiƂda, Jaceken
dc.date.accessioned2025-01-15T13:22:06Zen
dc.date.available2025-01-15T13:22:06Zen
dc.date.issued2024-01-01en
dc.description.abstractHigh-frequency systems use beamforming to mitigate the increased path loss. As the resulting beams become highly directional, Millimeter Wave (mmWave) radios conduct a beam sweep to probe all possible angular directions to locate each other and establish communication. In this paper, we propose an adaptive beam management strategy that leverages beam sweeping to avoid eavesdroppers and other potential attackers. Our solution employs Deep Reinforcement Learning (DRL) to dynamically select a subset of beams in the transmitter codebook. We evaluate this solution through a proof-of-concept implementation using a combination of Software-Defined Radios (SDRs) and commercial mmWave equipment, and show the improvements in the secrecy capacity.en
dc.description.versionAccepted versionen
dc.format.extentPages 1-6en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1109/ISWCS61526.2024.10639164en
dc.identifier.eissn2154-0225en
dc.identifier.issn2154-0217en
dc.identifier.orcidPereira da Silva, Luiz [0000-0001-6310-6150]en
dc.identifier.urihttps://hdl.handle.net/10919/124196en
dc.language.isoenen
dc.publisherIEEEen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectBeam managementen
dc.subjectBeamformingen
dc.subjectMillimeter-waveen
dc.titleEavesdropper Avoidance through Adaptive Beam Management in SDR-Based MmWave Communicationsen
dc.title.serialProceedings of the International Symposium on Wireless Communication Systemsen
dc.typeConference proceedingen
dc.type.dcmitypeTexten
dc.type.otherConference Proceedingen
pubs.finish-date2024-07-17en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/University Research Institutesen
pubs.start-date2024-07-14en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ISWCS_2024.pdf
Size:
970.96 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: