Assessment of Exceptional Quality Biosolids for Urban Agriculture

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Biosolids have been used as soil conditioners and fertilizers in agriculture and mine land reclamation, but application of Exceptional Quality (EQ) biosolids to rehabilitate anthropogenic soils for urban agriculture is recent and requires greater study to ensure their appropriate use. The objectives were: 1) to quantify plant available nitrogen (PAN) of new EQ biosolids in a greenhouse bioassay; 2) to quantify PAN of EQ biosolids applied to an urban degraded subsoil via tall fescue N fertilizer equivalency, and compare field results to laboratory tests; 3) to investigate EQ biosolids and inorganic fertilizer effects on urban soil properties, vegetable yields, and potential N and phosphorus (P) loss. Biosolids evaluated were products of thermal hydrolysis plus anaerobic digestion (BLOOM), blending with woody mulch (BM) and sand/sawdust (BSS), composting (LBC), and heat-drying (OCB). Organic N mineralization of new blended biosolids products ranged between 20-25% in the greenhouse bioassay. Products BLOOM, BM, and OCB had the highest organic N mineralization as estimated by the 7-day anaerobic incubation, and this test and soil nitrate-N had the highest correlations with tall fescue N uptake (r=0.49 and r=0.505, respectively). We conducted a two-year field study with four growing seasons (fall 2016-2017 and summer 2017-2018) in an urban disturbed subsoil where EQ biosolids were applied seasonally at agronomic N rates, and yearly at reclamation rates (5x agronomic N). Cabbage yields were greater with reclamation rates (~3.0 kg m-2) and bell pepper yields were greater with BLOOM reclamation rate (~1.0 kg m-2) than with the inorganic fertilizer (1.0 kg m-2 and 0.2 kg m-2, respectively) during second year growing seasons. Soil carbon (C) accumulation (%C remaining in the soil) two years after biosolids additions ranged between 37 to 84%. Soil N availability and mineralization were limited most likely due to lack of residual soil C and N, and high clay content. Nitrogen leaching losses from reclamation rates were not greater than agronomic N rates. Leachate P was below detection during most of the experiment. Despite limiting soil conditions, biosolids amendment at reclamation rates showed greatest potential to increase vegetable yield and improve soil properties after two years of application, while not impairing water quality.

Exceptional Quality biosolids, nitrogen availability, nitrogen mineralization, urban soils, urban agriculture